Pacific Coast
NEEA update breakout group report

CA, OR, WA*

*does not include AK and HI
Conceptual Diagrams

• Fjord
 – deep, stratified, sill/restricted flushed, steep-sided

• Coastal Lagoon (closed and open)
 – shallow, some bar dynamics regulated, limited FW, alternate extremes, wet/dry

• Embayments
 – ocean forcing, diffuse inputs, stormwater

• Drowned River Valley/River Mouth
 – watershed/ocean, horizontal stratification, wet/dry (& seasonal pulses), urban slobber
Conceptual Diagrams

• Fjord
 – deep, stratified, sill/restricted flushed, steep-sided, low DO, SAV, Macro

• Coastal Lagoon (closed and open)
 – shallow, some bar dynamics regulated, limited FW, alternate extremes, wet/dry, Macro, SAV

• Embayments
 – ocean forcing, diffuse inputs, stormwater, HABS

• Drowned River Valley/River Mouth
 – watershed/ocean, horizontal stratification, wet/dry (& seasonal pulses), urban slobber, all
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Key features</th>
<th>Nutrient inputs</th>
<th>Indicator variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjords</td>
<td>Deep, stratified, sill/retentive, steep</td>
<td></td>
<td>DO, SAV, Macro</td>
</tr>
<tr>
<td>Coastal Lagoons</td>
<td>Shallow, bar dynamics, limited flow</td>
<td>Varies with population and climate</td>
<td>Macro, SAV</td>
</tr>
<tr>
<td>Embayments</td>
<td>Oceanic processes, deep, diffuse inputs</td>
<td>along N-S gradient</td>
<td>HABs</td>
</tr>
<tr>
<td>River Mouths</td>
<td>Watershed & oceanic, horizontal stratif., pulsed, wet/dry</td>
<td></td>
<td>Macro, SAV, HABs, DO</td>
</tr>
</tbody>
</table>
West coast estuaries/bays

• Added some systems in all states
• Some do not have adequate data, but we feel it is important to list them as “?”s
 – prioritization based on susceptibility or where impending management need
• Re-classified (lumped) some systems
 – Will focus on representative system within category
• May need to nest assessments in bigger systems
Status

• S. CA: need to get data in order to input; data gaps; opportunity to incorporate NEEA indicators to Regional Monitoring Program
• C. CA: needs to happen
• OR: intends to add new data on 11 estuaries
• WA: Seagrass and macroalgae data ready to be input; WQ data there, but time to analyze needed
Case Studies

• Newport Bay: load reduction but no corresponding response improvement
• SFB: chl is increasing but unclear why; could be light limitation lifting. Does this increase in chl represent a problem?
• Yaquina Bay/Coos Bay: in development
• Hood Canal: DO problem increasing, but complicated as to why
• San Juan Is: significant seagrass loss and cause unknown
Problems

- Flushing is variable within estuary location and defines status…scaling issue, sub-basin scale
- Disconnect between pressure and state, not capturing that “bad not as bad” but “good not as good”…
- Temporal aliasing due to climate variation
Salinity zones

• Why do this???
 – N v P ?
 – Sense of flushing ?
 – Proximity to source, linear model ?

• Should this be re-visited??
 – We think so, especially for 3 of 4 West Coast systems
 – Need justification for this “baggage” for angst:payoff ratio
Revise eutrophication conc. model

• Nutrient loads
 – N:P ratios; nutrient form; micronutrient; C

• Transport and storage
 – groundwater role
 – pulses and hydrologic alteration:
 – flashy urban yet steady dams)
 – urban slobber (persistent anthrop. trickle)

• Complicating/synergistic factors
 – food-web alterations, exotic species; top predator alterations; pharmaceutical etc loads
 – i.e., SFB with Asian clams…less chl but big problems
 – climate change -- hardened shorelines
Human drivers changing

- Population vs. housing
- Urban more diffuse
 - septic in exurbs
- Ag more concentrated
- Sewage treatment upgrades
- Atmospheric loading & deposition
 - less NOx more NH3
- Ag/suburban land use
 - fragmentation and impervious surfaces
Recommendations

• Monitoring
 – Better loading estimates (#1)
 – Use of forecasting models for prioritization
 – Data collection over the year, assess multi-year avgs, evaluate on decadal scale
 – Tie-in to IOOS
 – Integrate sampling technologies
 – Assess variation within current indicators
 – Restoration effectiveness measures
 – Enhance and endorse web-based approach
Recommendations

• Research
 – Refine our understanding of issues in “revised eutrophication conceptual model” slide and the mechanisms involved (#1)
 – Development of operational forecasting models (#1)
 – Better techniques for load estimates
 – Better technologies for flushing estimates
 – Refine/define a susceptibility index
Recommendations

• Management
 – Evaluate impacts in “changing human drivers” slide & determine management responses
 – Integration of EPA (regulatory) and NOAA & USGS (assessment) approaches
 • e.g., 305(b) vs. NEEA
 – Utilize State v. Pressure analysis