Biogeography of bacterioplankton in estuarine systems

Jude Apple

Marine Biogeochemistry
US Naval Research Laboratory
Washington DC

Speaker Introduction
by Professor Bill Dennison
Biogeography of bacterioplankton in estuarine systems

Jude Apple
Marine Biogeochemistry
US Naval Research Laboratory
Washington DC
Outline

• Marine Biogeochemistry
• Transformation and Transport of Carbon
• Remote Sensing Applications
• Biogeography of Bacterioplankton Communities
Marine Biogeochemistry

- Fate and transformation of carbon in aquatic systems
 - riverine, estuarine, coastal and marine

- Biological, physical and chemical processes
 - primary production, respiration, biodegradation
 - transport, mixing, sedimentation
 - direct effects of salinity, photodegradation

- Terrestrial organic matter (TOM)
 - Significant source of carbon to marine systems
 - Transport and transformation poorly understood
Inputs of TOM to Estuarine Systems

Albemarle Sound post-Hurricane Floyd (23 Sept 99)
Carbon Transport and Transformation Along Estuarine Gradients

- Low salinity
- High nutrients
- High TOM
- High turbidity

RIVER

- High salinity
- Low nutrients
- Low TOM
- Low light attenuation

OPEN OCEAN

Physicochemical effects of salinity

photodegradation

sorption and deposition

biological processing & degradation

CO₂
Remote Sensing

- Facilitate more efficient collection of field data
- Remote sensing algorithms for coastal and estuarine systems are not well defined
- Optical properties of in-water parameters allow detection via airplane and satellite
- Parameters identified by unique absorbance spectra
 - Temperature
 - DOM
 - Chlorophyll
 - TSS/POM
 - Salinity
Remote Sensing along Salinity Gradients

Great Bay/Mullica River Estuary (NJ)
Integrating Biogeochemistry, Remote Sensing and Microbial Parameters

- Refine remote sensing algorithms
- Provide tactical information for littoral zones
- Characterize the composition, degradability, fate of TOM
- Identify role of microbial communities (i.e., bacterioplankton) in mediating carbon transformation and flux
- Identify transferable patterns in the composition of bacterioplankton communities along estuarine gradients
Bacterioplankton in Aquatic Systems

- Found in all natural waters
- Non-pathogenic!
- Small ($\leq 1\text{mm}$) yet abundant ($>10^6 \text{cells/ml}$)
- Comparable in biomass to phytoplankton
- Fundamental in nutrient & carbon remineralization
- Drive water quality parameters (i.e. anoxia, nutrient availability)
- Important role in carbon cycling

(DAPI stained slide of bacterioplankton from Chesapeake Bay)
How does community composition change over space and time in natural systems?
Patterns in Biogeography

- Global plant biomes

Factors regulating plant biogeography include temperature, precipitation, day length...

Image from http://www.blueplanetbiomes.org/world_biomes.htm
Patterns in Biogeography

• Life zones (vertical belting)

- Spatial distribution of plant species throughout the globe is highly predictable and based on a small number of environmental factors.
Microbial Biogeography

- Do bacteria exhibit biogeographic patterns?
 - Random distribution
 - Baas-Becking Hypothesis: “Everything is everywhere…”
 - Systematic or predictable patterns in distribution?

- Estuarine systems
 - Factors believed to regulate diversity covary predictably

Crump et al. 2004
Experimental Approach

1) Investigate changes in the phylogenetic composition of bacterioplankton communities along estuarine gradients
Experimental Approach

1) Investigate changes in the phylogenetic composition of bacterioplankton communities along estuarine gradients

2) Use denaturing gradient gel electrophoresis (DGGE) as an index of community composition
Experimental Approach

1) Investigate changes in the phylogenetic composition of bacterioplankton communities along estuarine gradients

2) Use denaturing gradient gel electrophoresis (DGGE) as an index of community composition

3) Identify environmental conditions correlated with changes in diversity or composition
Experimental Approach

1) Investigate changes in the phylogenetic composition of bacterioplankton communities along estuarine gradients

2) Use denaturing gradient gel electrophoresis (DGGE) as an index of community composition

3) Identify environmental conditions correlated with changes in diversity or composition

4) Repeat in a wide range of estuarine systems to identify transferable patterns in estuarine bacterioplankton biogeography
Sample Collection

- Sample at 4psu intervals (0 to 32)
- Three stations at 0, 16 and 32psu for cross-inoculation experiment
- Measure CDOM, DOC, dissolved nutrients, chlorophyll, salinity, temperature
- Collect bacterial DNA from whole water and free-living (3μm filtered) fractions
Site Locations

Puget Sound & Snohomish River

Gulf of Mexico & Atchafalaya River

Chesapeake Bay

Delaware Bay

Winyah Bay

Kahana Bay, Oahu

R/V Barnes

R/V Sharp

R/V Pelican
Puget Sound & Snohomish River

- 170km transect from 0 to 32 psu
- Steep salinity gradient (~5km from 0 to 16 psu)
Fingerprinting with DGGE

- Natural bacterioplankton community
- Extract DNA
- Amplify 16s rRNA genes with bacterial primers
- Gel electrophoresis across gradient of denaturants
- Banding pattern represents DNA fingerprint of each community

Images courtesy of Byron Crump
Changes in community composition

- Banding patterns differ among stations
- Changes occur in presence vs. absence as well as density of bands
- Thus, dominant phylotypes shift as one moves from marine to fresh endmembers
Quantifying banding patterns: Multidimensional Scaling (MDS)

- Convert band presence vs. absence to binary data (1=present, 0=absent)
Quantifying banding patterns: Multidimensional Scaling (MDS)

- Convert band presence vs. absence to binary data (1=present, 0=absent)
- Create a similarity matrix of all bands (Dice correlation)
 \[S_d = \frac{2a}{b+c} \]
Quantifying banding patterns: Multidimensional Scaling (MDS)

- Convert band presence vs. absence to binary data (1=present, 0=absent)
- Create a similarity matrix of all bands (Dice correlation)
 \[S_d = \frac{2a}{(b+c)} \]
- Similarity matrix is used to generate distances in MDS.
Quantifying banding patterns:
Multidimensional Scaling (MDS)

- Convert band presence vs. absence to binary data (1=present, 0=absent)

- Create a similarity matrix of all bands (Dice correlation)
 \[S_d = \frac{2a}{b+c} \]

- Similarity matrix is used to generate distances in MDS.

- Similarity values are plotted in two dimensions
Quantifying banding patterns:
Multidimensional Scaling (MDS)

- Convert band presence vs. absence to binary data (1=present, 0=absent)
- Create a similarity matrix of all bands (Dice correlation)
 \[S_d = \frac{2a}{b+c} \]
- Similarity matrix is used to generate distances in MDS.
- Similarity values are plotted in two dimensions
- Distances reflect degree of similarity between samples/banding patterns
Visualizing similarities

- There is an obvious shift in composition along the estuarine gradient.

- Changes in composition reflect distinct systems as well as environmental gradients.
Salinity and CDOM

• Changes in composition are well correlated with both salinity and CDOM

• Is this conservative mixing, direct effect of salinity, or response to organic matter substrates?
Hypotheses on Shifting Structure

• Changes in composition are related to residence time and hydrographic characteristics.

• This provides a model for testing hypothesis regarding mechanisms driving biogeography of estuarine bacterioplankton.
Conclusions

• Estuarine bacterioplankton exhibit biogeographic variability

• Community composition is correlated with salinity and DOM source.

• Role of dispersal vs. environment in biogeographic patterns needs to be identified.
Acknowledgements

Collaborators
Thomas Boyd
Chris Osburn
Leila Hamdan
Byron Crump

NRC Postdoctoral Research Fellowship
US Naval Research Laboratory
Horn Point Laboratory
Crews of R/V Barnes, R/V Pelican, R/V Sharp
Biogeography of bacterioplankton in estuarine systems

Question Time

Jude Apple
Marine Biogeochemistry
US Naval Research Laboratory
Washington DC