Aquatic grass communities are important in Chesapeake Bay

- Food for waterfowl
- Increase water clarity
- Habitat for blue crabs

Good water clarity – Poor water clarity
Aquatic grass are good indicators

- Widespread distributions
- Responsive to perturbations (high light requirements)
- Integrative of environmental conditions
- Important ecological role

Aquatic grass = canary in Chesapeake Bay
Aquatic grass communities are widely distributed in Chesapeake Bay.

- Zostera marina ‘eelgrass’ in York River
- Ruppia maritima ‘widgeongrass’ in St Mary’s River

Sources: VIMS & Maryland DNR
Aquatic grass communities determined by salinity

- **Low salinity** (12 species)
 - Hydrilla
 - Eurasian watermilfoil
 - Widgeon grass

- **Medium salinity** (6 species)
 - Ruppia maritima
 - Redhead grass

- **High salinity** (2 species)
 - Zostera marina
 - Eelgrass

After Moore et al. 2000

Low salinity aquatic grass community
Medium salinity aquatic grass community
High salinity aquatic grass community
Bay wide aquatic grass loss

1933

1963

1965 1980

1984-2003

Restoration Goal (185,000 acres by 2010)

*Note – Hatched area of bar includes estimated additional acreage. No survey in 1992
Source: Chesapeake Bay Program
Annual aquatic grass monitoring using aerial photography

- Annual monitoring project (1978, 1984-present)
- 173 flight lines (2,340 mi)
- 2,033 B/W aerial photographs
- Scale 1:24,000
Photographs are converted to maps by VIMS and ground truthed

- Diamonds show ground truth sites, where species are recorded
- Density is also estimated from photographs
Species composition provided by field observations

- Approximately 1000 observations per year
- Over 17,000 observations in total
- Participants:
 - Research programs
 - Bay managers
 - Charter boat captains
 - “SAV Hunt”
Aquatic grass in 2004

Total area:
- Increased compared to 2003
- Still less than that recorded in 2002
But…
still a long way from the restoration goal

Aquatic grass area (Acres x 1000)

2010 restoration goal

Year

Not all community types and regions of the Bay respond the same.
Susquehanna flats: largest increase in aquatic grass area

1989 2004

Area of aquatic grass (ha)

Year

Low salinity responsive: rapid loss and recovery

1997: Large aquatic grass bed

2002: Complete die-off

2004: Recovering

Eastern Neck Narrows
High salinity: Slow to recover from Hurricane Isabel

June 2003
Aquatic grass

June 2004
Aquatic grass loss and no recovery

York River – Allens Island

Hurricane Isabel
September 2003
What to expect in 2005:
Forecasting aquatic grass changes
What is an ecological forecast?

- Analogous to a weather forecast - predict conditions in the future
- Predict the effects of biological, chemical, physical, and human-induced changes on ecosystems
- Do not guarantee what is to come - they offer scientifically sound estimations of what is likely to occur
Why make an ecological forecast?

- Provide context for understanding summer conditions
- Provide guidance for Chesapeake restoration efforts
- Establish a proactive communication and education program
- Aid management activities
2005 Aquatic grass forecast

Community type
- **Low salinity** (12 species)
- **Medium salinity** (6 species)
- **High salinity** (2 species)

Locations where community types occur

20 years of aquatic grass cover

- **Overall increase in area**
- **No overall change expected**
- **Small overall increase in area**

2005 forecast
Methods

• 20 years of bay-wide survey data
• Spring water quality
• Previously established relationships
• Expert interpretation and analysis
Keeping track

• Field observations made by scientist and restoration experts

• Actual conditions compared to the forecast

• Any deviations from forecast explained on website

– www.chesapeakebay.net/bayforecast.htm
Restoration aims to improve conditions

- **Improving water quality**
 - Agriculture best management practice
 - Sewage treatment plant upgrades
 - Stream corridor restoration

- **Planting aquatic grass**
 - Adult plants
 - Seeds

Northern Bay point source nutrient loads
An example of successful long term survival of aquatic grass transplants

1984 1985 1987

York River
Aquatic grass conclusions

• An overall increase in 2004 compared to 2003
• Most increases occurred in low salinity regions
• Significant increases still required to meet restoration goal
• 2005 forecast:
 - Continued increases in low salinity regions
 - High salinity community recovering from Hurricane Isabel