N_2 fixation: Does physiology matter?

Margie Mulholland
Old Dominion University

Funding: National Science Foundation
Acknowledgements

Thanks to:

Funding from the National Science Foundation

Dr. Wajih Naqvi, NIO, and the SIBER organizers

Dr. Prabhu Matondkar (NIO)

Dr. Amal Jayakumar
Importance of N_2 fixation?

- Geochemical considerations – long-term inventories of nutrients & trace elements
- Ecological/oceanographic significance
 - New N; alleviates system-wide N limitation?
 - Elemental stoichiometry of ecosystems and basins
 - Community structure & export
- Implications for climate & C cycling
How do we estimate N_2 fixation in the ocean?

- Geochemical considerations – elemental budgets (N^*, P^*) & long-term averages
- Isotopic fractionation and mixing
- Direct measurements – acetylene reduction & $^{15}N_2$ uptake

- Are estimates affected by how the organisms actually work?
N₂ fixation – organisms & physiology

- Distributions
 - Tropical and subtropical distribution of *Trichodesmium*
 - Unicellular cyanobacteria more broadly distributed with latitude – IO?
 - α and γ-Proteobacteria
 - Diatom/diazotroph assemblages – IO?

- N₂ fixation rates and C fixation rates
- Stoichiometry of N₂ fixers
- N release and regeneration
- Limitation of N₂ fixation
Why is there N limitation anywhere? (or is there)

• What limits N_2 fixation?
 – Oxygen
 – Temperature
 – Light
 – Other elements (e.g., P and Fe)?
 – Excess N?
Potential from direct estimates

- *Trichodesmium* can fix N\(_2\) at high rates (up to 2.5 nmol N col\(^{-1}\) h\(^{-1}\)); can provide up to 50% of new production where they occur if abundant. IO distribution

- Unicells can fix >20 nmol N l\(^{-1}\) h\(^{-1}\) but generally up to 1 nmol N l\(^{-1}\) h\(^{-1}\) (Montoya et al. 2004, Falcon et al. 2004, Voss et al. 2004, Zehr et al. 2001, Mulholland et al. 2006), even in coastal waters (Mulholland et al. in prep); potentially ~10% of total new production in the oceans. IO?

- Diatom-diazotroph symbioses also fix significant amounts of new N and may be associated with coastal environments (Subramaniam et al. submitted). IO?

- Diazotrophic cyanobacteria & heterotrophic proteobacterial sequences found in deeper waters (Langlois et al. 2005). IO?
Trichodesmium always present but higher abundances Dec-Jan and April

- What limits N_2 fixation by *Trichodesmium*?
 - Temperature, light (photoautotroph), Fe or P, excess N?
Potential from direct estimates

- *Trichodesmium* can fix N\(_2\) at high rates (up to 2.5 nmol N col\(^{-1}\) h\(^{-1}\)); can provide up to 50% of new production where they occur if abundant. IO distribution

- Unicellular organisms can fix >20 nmol N l\(^{-1}\) h\(^{-1}\) but generally up to 1 nmol N l\(^{-1}\) h\(^{-1}\) (Montoya et al. 2004, Falcon et al. 2004, Voss et al. 2004, Zehr et al. 2001, Mulholland et al. 2006), even in coastal waters (Mulholland et al. in prep); potentially ~10% of total new production in the oceans. IO?

- Diatom-diazotroph symbioses also fix significant amounts of new N and may be associated with coastal environments (Subramaniam et al. submitted). IO?

- Diazotrophic cyanobacteria & heterotrophic proteobacterial sequences found in deeper waters (Langlois et al. 2005). IO?
Unicellular diazotrophs

- Small (< 10 μm) unicellular cyanobacteria and bacterioplankton (Zehr et al. 2001) fix N₂ (Falcon et al. 2004).
- Extended distribution so may be at least as important as colonial diazotrophs (Montoya et al. 2004).

- What limits N₂ fixation by unicellular cyanobacteria?
 - Light (photoautotroph), Fe or P, excess N?
Potential from direct estimates

- *Trichodesmium* can fix N\textsubscript{2} at high rates (up to 2.5 nmol N col-1 h-1); can provide up to 50% of new production where they occur if abundant. IO distribution

- Unicells can fix >20 nmol N l-1 h-1 but generally up to 1 nmol N l-1 h-1 (Montoya et al. 2004, Falcon et al. 2004, Voss et al. 2004, Zehr et al. 2001, Mulholland et al. 2006), even in coastal waters (Mulholland et al. in prep); potentially ~10% of total new production in the oceans. IO?

- Diatom-diazotroph symbioses also fix significant amounts of new N and may be associated with coastal environments (Subramaniam et al. submitted). IO?

- Diazotrophic cyanobacteria & heterotrophic proteobacterial sequences found in deeper waters (Langlois et al. 2005). IO?
What limits N_2 fixation DDA?
- Light, Si, excess N?
Potential from direct estimates

- *Trichodesmium* can fix N\textsubscript{2} at high rates (up to 2.5 nmol N col-1 h-1); can provide up to 50% of new production where they occur if abundant. IO distribution

- Unicells can fix >20 nmol N l-1 h-1 but generally up to 1 nmol N l-1 h-1 (Montoya et al. 2004, Falcon et al. 2004, Voss et al. 2004, Zehr et al. 2001, Mulholland et al. in prep); potentially ~10% of total new production in the oceans. IO?

- Diatom-diazotroph symbioses also fix significant amounts of new N and may be associated with coastal environments (Subramaniam et al. submitted). IO?

- Diazotrophic cyanobacteria & heterotrophic proteobacterial sequences found in deeper waters (Langlois et al. 2005) and coastal waters (Mulholland et al. in prep). IO?
What limits N_2 fixation?

- Oxygen
- Temperature
- Light
- Other elements (e.g., P and Fe)?
- Excess N?
Outstanding questions for the IO

- **N₂ fixation** – where and who is it?
 - Limiting factors affect distributions
 - Physical – wind, water column stability
 - Biological – nutrient & trace element supply/availability
 - Ephemeral blooms and growth cycles
 - Rates - *Trichodesmium* and other N₂ fixers

- **Fate of newly fixed N₂**
 - Community interactions & trophic transfer
 - Export versus recycling

- **Long term controls and feedbacks**
 - Anthropogenic input of materials - rivers
 - Climatic forcing and feedbacks
Limitation Tendency: Fe (blue) N (red)

Upwelling of high N:Fe waters results in Fe limitation. Favorable for N_2 fixation? Bay of Bengal is always Fe replete.

Need for Actual Observations

• **Stoichiometric considerations** – we may get it wrong
 - Ratios of rates
 - Ratios of particles and dissolved material

• **Absolute magnitude is unknown**
 - Net input versus export now but, specific processes may vary independently under future scenarios
Physiological Observations

- CO$_2$ fixation:N$_2$ fixation \neq C:N
- CO$_2$ fixation:N$_2$ fixation generally higher than C:N ratio of *Trichodesmium* POM (5 – 6)
- Important when estimating N and C specific growth rates?
- Important in stoichiometric inferences estimating one from the other (e.g., Orcutt et al. 2001)
- Need actual measurements
Literature

<table>
<thead>
<tr>
<th>Location</th>
<th>C:N₂ fixation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Average</td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>5.4 - 42.7</td>
<td>13.1</td>
</tr>
<tr>
<td>New Caledonia (lagoon)</td>
<td>9.2 - 77.7</td>
<td></td>
</tr>
<tr>
<td>North Atlantic (latitudinal gradient)</td>
<td>13.6 - 33.3</td>
<td>21.9</td>
</tr>
<tr>
<td>North Pacific</td>
<td>1.2 - 2.1</td>
<td>16</td>
</tr>
<tr>
<td>Sargasso Sea</td>
<td>1.5 - 87</td>
<td>128</td>
</tr>
<tr>
<td>BATS (puffs)</td>
<td>13 - 437</td>
<td>198</td>
</tr>
<tr>
<td>BATS (tufts)</td>
<td>15 - 703</td>
<td></td>
</tr>
<tr>
<td>N. Atlantic</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>N. Atlantic</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>N. Atlantic</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Trichodesmium IMS101 (batch)</td>
<td>6.5 - 15.2</td>
<td>10</td>
</tr>
<tr>
<td>Trichodesmium IMS101 (semi-continuous)</td>
<td>6.5 - 25.2</td>
<td></td>
</tr>
<tr>
<td>Trichodesmium IMS101 (continuous)</td>
<td>13.4 - 20.0</td>
<td></td>
</tr>
</tbody>
</table>

C:N uptake ratios > C:N of particulate material

Is C fixation too high or N₂ fixation too low?
C:N uptake

- Which is a better estimator of growth in nature?
- Net versus gross N_2 fixation
- $N:P$
- Fe scavenging strategies?
Evidence for substantial nitrogen release by *Trichodesmium*

- Accumulation of DIN and DON within blooms as they progress (Devassy et al. 1978 & 1979, Devassy 1987, Karl et al. 1997, Glibert & O’Neil 1999) and in cultures as they age (Mulholland et al. 1999, Mulholland and Capone 2001)
- Release ~50 % of recently fixed N\textsubscript{2} as LMW DON (Glibert and Bronk 1994) and amino acids (Capone et al. 1994)
- DON and NH\textsubscript{4}+ regeneration in cultures (Mulholland et al. 2001; 2004; Mulholland & Bernhardt 2005)
- What does this mean for overall isotopic signature of N pools and elemental stoichiometry on short timescales
- Trophic transfer – recycling in the euphotic zone (Mulholland et al. 2004)
N Regeneration Pathways

- Direct release of NH$_4^+$ or DON
- DOM decomposition via extracellular enzymes
- Grazing
- Viral cell lysis
- Bacterial remineralization
Ecological constraints on sinking flux

Trichodesmium OR Bacteria

Grazers

Virus

Other phyto

N\textsubscript{H}_4^+ \text{ & DOM}

Bacteria

Sinking
Pooled release rates from the Gulf of Mexico

Percent release vs. Incubation time (h)

- **Avg = 57%**

Release (nmol N\(\text{col}^{-1}\text{h}^{-1}\)) vs. Incubation time (h)

- **Avg = 0.63**
Literature

<table>
<thead>
<tr>
<th>Location</th>
<th>C$_2$H$_2$:N$_2$ Range</th>
<th>Average</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulf of Mexico</td>
<td>3.3 - 36.8</td>
<td>6.2</td>
<td>Mulholland et al. (2006)</td>
</tr>
<tr>
<td>New Caledonia (lagoon)</td>
<td>27 - 325</td>
<td></td>
<td>Mulholland (unpub data)</td>
</tr>
<tr>
<td>North Atlantic (latitudinal gradient)</td>
<td>2.1 - 7.4</td>
<td>4.2</td>
<td>Mulholland et al. (in prep)</td>
</tr>
<tr>
<td>North Pacific</td>
<td>3 - 10</td>
<td>1.9</td>
<td>Mague et al. (1977)</td>
</tr>
<tr>
<td>Sargasso Sea</td>
<td>6.3</td>
<td></td>
<td>Carpenter & Price (1977)</td>
</tr>
<tr>
<td>Sargasso Sea</td>
<td>2.9</td>
<td></td>
<td>Scranton (1987)</td>
</tr>
<tr>
<td>Caribbean and Sargasso Seas</td>
<td>4.1</td>
<td></td>
<td>Scranton et al. (1987)</td>
</tr>
<tr>
<td>BATS (net tows)</td>
<td>4.9</td>
<td></td>
<td>Orcutt et al. (2001)</td>
</tr>
<tr>
<td>BATS (SCUBA)</td>
<td>1.4</td>
<td></td>
<td>Orcutt et al. (2001)</td>
</tr>
<tr>
<td>BATS</td>
<td>3</td>
<td></td>
<td>Orcutt et al. (1999)</td>
</tr>
<tr>
<td>Sargasso Sea</td>
<td>6</td>
<td></td>
<td>Carpenter & McCarthy (1975)</td>
</tr>
<tr>
<td>North Atlantic</td>
<td>0.9 - 7.3</td>
<td>3.6</td>
<td>Capone et al. (2005)</td>
</tr>
<tr>
<td>Caribbean Sea</td>
<td>3.4</td>
<td></td>
<td>Glibert & Bronk (1994)</td>
</tr>
<tr>
<td>Trichodesmium IMS101 (batch)</td>
<td>1.7 - 9.8</td>
<td>5.6</td>
<td>Mulholland et al. (2004)</td>
</tr>
<tr>
<td>Trichodesmium IMS101 (cont.)</td>
<td>3.0 - 22.2</td>
<td>11.4</td>
<td>Mulholland & Bernhardt (2005)</td>
</tr>
<tr>
<td>Trichodesmium IMS101 (semi-cont)</td>
<td>2.8 - 15.9</td>
<td></td>
<td>Mulholland et al. (in prep)</td>
</tr>
</tbody>
</table>

Release artificially high in cultures but varies with growth conditions.
What controls \(\text{N}_2 \) fixation and release?

\(\text{N}_2 \) fixation from cultures

- Varies with growth rate – higher at higher growth rates
- Varies with P supply - higher when P is not limiting.
- Some indication of variability with temperature and CO\(_2\)
- Fe, oxygen, and light?
What about P and Fe?

- Fe limitation – may apply in some areas of IO
- P limitation
 - Rapid recycling of P (up to 100% of *Trichodesmium* P demand could be met through P regeneration in GOM)
 - P regeneration in *Trichodesmium* blooms of 2 - 15 nmol l\(^{-1}\) h\(^{-1}\) (compare with N regeneration)
 - High rates of alkaline phosphatase activity
 - Flexible N:P ratios?
- Excess N? Is it important (Langlois et al. 2005, Mulholland et al. in prep)
Correlations between N_2 fixers and other taxa.

- First observed in the Indian Ocean (Devassy)
- Australia (Revelante & Gilmartin, Furnas, Burford et al., O’Neil et al.)
- A variety of species live in association with colonies (Sellner)
- Gulf of Mexico (Walsh & Steidinger, Lenes et al.)
N$_2$ fixation and other taxa

- Unpublished research
- Anecdotal information
- Historical monitoring data
- Correlation between timing and magnitude of organisms
Weekly mean *K. brevis* surface abundance
(within 9 km of Cedar Key)

From Walsh & Steidinger (2001)
For Gulf of Mexico
Not including unicells!

- Acetylene reduction
 ~0.3 – 2.6 nmol N col\(^{-1}\) h\(^{-1}\)

- \(^{15}\)N\(_2\) uptake
 0.05 – 2.2 nmol N col\(^{-1}\) h\(^{-1}\)

- \(^{15}\)N release
 0.1-1.8 nmol N col\(^{-1}\) h\(^{-1}\)
 As \(\text{NH}_4^+\) (0.1-1.1 nmol N col\(^{-1}\) h\(^{-1}\))

- *Trichodesmium* abundance
 - Cruises 0.6-20 col l\(^{-1}\)
 - Summer *Trichodesmium* 20 col l\(^{-1}\)
 - Background 0.75 col l\(^{-1}\)
 - Bloom >1000 col l\(^{-1}\)

- Water column N uptake
 - ~20 - 100 nmol N l\(^{-1}\) h\(^{-1}\)
 - Up to 1000 during bloom
Direct links: Trophic transfer of regenerated N

Bottles with *Trichodesmium* sealed in dialysis bags.

15N$_2$ gas is fixed by *Trichodesmium* within the bags and some portion is released (as DON or NH$_4^+$), which is then available for re-incorporation by cells outside of dialysis bags.
Results from direct measurements

• Up to 43% of recently fixed N moved into co-occurring plankton in 4-6 h incubations

• Uptake rates of released N are on the order of observed ambient uptake rates in the Gulf of Mexico (or even total N)
The fate of new N in tropical systems

- Non-Redfield and variable stoichiometry of CO$_2$:N$_2$ fixation rates – can one be reliably inferred from the other? (Orcutt et al. 2001)
- Fuels regenerated and heterotrophic processes
- DOM production versus particle flux
- Rapid and non-Redfield regeneration of N and P in the euphotic zone
- What does that mean for C?
N cycling in colonies

\[\text{NHNH}_4^{++} \quad \text{NHNH}_4^{++} \quad \text{NHNH}_4^{++} \quad \text{NHNH}_4^{++} \]

\[\text{GluGlu} \quad \text{GlnGln} \quad \text{GlnGln} \quad \text{AAO/PHAAO/PH} \]

\[\text{N}_2 \quad \text{N}_2 \quad \text{N}_2 \quad \text{N}_2 \]

\[\text{NH}_4^+ \quad \text{NH}_4^+ \quad \text{NH}_4^+ \quad \text{NH}_4^+ \]

\[\text{N}_2 \quad \text{Gln} \quad \text{Gln} \quad \text{Gln} \quad \text{Gln} \]

\[\text{AAO/PH} \quad \text{NH}_4^+ + \text{keto acid} \]

\[\text{N}_2 \quad \text{N}_2 \quad \text{N}_2 \quad \text{N}_2 \]

\[\text{NH}_4^+ \quad \text{NH}_4^+ \quad \text{NH}_4^+ \quad \text{NH}_4^+ \]

\[\text{N}_2 \quad \text{Glu} \quad \text{Glu} \quad \text{Glu} \quad \text{Glu} \]

\[\text{N cycling in colonies} \]
What about the future (& past)

- Do rates of N$_2$ fixation vary over time?
- Do associated processes (CO$_2$ fixation, elemental stoichiometry, regeneration) vary over time?
- Does the system change in a balanced way?
For both isolates (IMS101 & GBR), raising pCO$_2$ to year 2100 levels dramatically increased N$_2$ fixation rates, regardless of either temperature or limitation by P (Hutchins et al., in review).
1) **Biomass-normalized N₂ fixation rates** increased as pCO₂ increased.

2) **Biomass-normalized CO₂ fixation rates** also increased by >50% between 375 and 1500 ppm CO₂.

3) **Cellular molar N:P ratios** increased from near-Redfield values of 17 at present day CO₂ concentration to 21-23 at 750-1500 ppm.

4) *Trichodesmium* cannot survive long at a low pCO₂ (150 ppm)
Implications

- Future anthropogenic scenarios
- No N_2 fixation by *Trichodesmium* at glacial maximum
- Increase in N_2 fixation during interglacial (as for denitrification are they coupled?)
- Other N_2 fixers?
Indian Ocean

A. Classical gyres

B. Fe limited but high N
 Omani coast

C. N₂ fixation/denitrification
 OMZ
Conclusions & future directions

• Still need measurements to get magnitude of N_2 fixation in Indian Ocean
 – Coupling or other relationship with denitrification?
 – Changes over time in competing processes

• Physiology (all diazotrophs)
 – Relative rates of N and C uptake
 – Elemental cycling under range of environmental conditions
 – Controls on N_2 fixation

• Ecology & Oceanography: Fate of the recently fixed N_2
 – Timescales of export and regenerated production signals
 – Other diazotrophs
 – Role of bacteria & trophic linkages