Nitrogen assimilation and f-ratios in the Indian Ocean

Rengaswamy Ramesh*

Satya Prakash, Rohit Srivastava, Naveen Gandhi and Sanjeev Kumar*

Physical Research Laboratory, Ahmedabad 380 009 India
Aim:

• To estimate the new production in the Indian Ocean using 15N isotope to assess the carbon fixing capability of the region and its role in carbon cycle.

• To estimate the Primary Productivity using Remote Sensing data (IRSP4 OCM) and use the above results to get new production estimates.
Cruises Participated

Arabian Sea:

November 2001 (SK-176)

Northeast monsoon - 1-20th January 2003 (SK-186)

- 28th February- 5th March 2003 (SS-212)

Bay of Bengal:

Post-monsoon - 17th September-11th October 2002 (SK-182)

Pre-monsoon - 16th April-6th May 2003 (SK-191)

Southern Indian Ocean:

Late Austral Summer- 25th Jan – 1st April 2006
PRIMARY PRODUCTION = NEW PRODUCTION + REGENERATED PRODUCTION

(Dugdale and Goering; 1967)

f-ratio = NEW PRODUCTION / TOTAL PRODUCTION

Averaged over time (annual)

New Production = Export Production

(Eppley and Peterson; 1983)
Uptake rate (mmol N/l/hr) = \(\frac{15N_{xs} \times PON}{15N_{enr} \times T} \)

where,
- \(15N_{xs} \) = Excess \(15N \) in post incubation sample
- \(PON \) = Particulate nitrogen content of sample (nmol/l)
- \(15N_{enr} \) = \(15N \) enrichment in dissolved fraction
- \(T \) = Time of incubation in hrs.

(Dugdale and Wilkerson 1986)

Conversion in terms of Carbon using Redfield ratio
\(1 \)mmol Nm\(^{-2}\) d\(^{-1}\) ~ 80mgC m\(^{-2}\) d\(^{-1}\)
SK-182 and SK-191
Period: Sep-Oct 2002 and Apr-May 2003
9 PP Stations - 15N Experiments were performed (Red dots)
24 CTD stations - Samples were collected to assess natural variability in the nitrogen isotopic composition of phytoplankton.
Column Production during Post monsoon 2002

(mmol N m\(^{-2}\) d\(^{-1}\))

Overall Average~ 4mmolN m\(^{2}\) d\(^{-1}\)
New Production during Post-monsoon 2002 (mmol N m\(^{-2}\)d\(^{-1}\))

Average ~ 2.6mmol N m\(^{-2}\) d\(^{-1}\)
f-ratio during post-monsoon 2002 in the Bay of Bengal
Column Production during Pre-monsoon 2003 in the Bay of Bengal (mmol N m\(^{-2}\) d\(^{-1}\))

- Overall Average: \(~ 9 \text{ mmol N m}^{-2}\text{d}^{-1}\)
- Open Ocean: \(~ 6 \text{ mmol N m}^{-2}\text{d}^{-1}\)
- Coastal: \(~ 11 \text{ mmol N m}^{-2}\text{d}^{-1}\)
New Production during Pre-monsoon 2003 in the Bay of Bengal (mmol N m\(^{-2}\) d\(^{-1}\))

Overall Average \(~ 6\) mmol N m\(^{-2}\) d\(^{-1}\)
Open Ocean \(~ 4\) mmol N m\(^{-2}\) d\(^{-1}\)
Coastal \(~ 8\) mmol N m\(^{-2}\) d\(^{-1}\)
Comparison of New Production during post and Pre-monsoon in the Bay of Bengal (mmol N m$^{-2}$ d$^{-1}$)
Comparison of uptake pattern during pre-and post-monsoon in the BOB

Post-monsoon

Pre-monsoon

Nitrate profile
New Production = 5 mmol N m\(^{-2}\) d\(^{-1}\)

require 5 mmol NO\(_3\) m\(^{-2}\) d\(^{-1}\)
if nitrate is the only source

Nitrate conc. ~20 mmol m\(^{-3}\)

Pumping rate of around 0.9 m d\(^{-1}\) is known during November in the BOB (Vinaychandran and Matthew; 2003)
New and Regenerated production during January 2003 (mmol N m⁻² d⁻¹) in the Arabian Sea

![Bar chart showing nitrogen production in the Arabian Sea during January 2003.](chart)

- **Nitrate**
- **Ammonium**
- **Urea**

Open
- PP1
- PP2
- PP3
- PP5
- PP6
- PP7
- PP8

Coastal
- PP2
f-ratio during the month of January 2003 in the Arabian Sea
Vertical profiles of nitrate during January 2003 (SK-186)
New Production in the Arabian Sea during Feb-March 2003 (mmol N m$^{-2}$ d$^{-1}$)
f-ratio during Feb-March 2003
Sampling Stations in the Southern Indian Ocean
Column Production in the Southern Indian Ocean (mmolN/m²/day)
ARABIAN SEA

- Watts and Owens 1999 \(y = 0.33x - 0.35 \) \(R^2 = 0.86 \)
- Present Study \(Y = 0.18x + 0.02 \) \(R^2 = 0.42 \)

Bay of Bengal

- Squares – Post monsoon \(Y = 0.86x - 0.90 \) \(R^2 = 0.96 \)
- Triangle – Pre-monsoon
F-Ratio in the Southern Ocean

Relation between nitrate uptake and Total N uptake

\[y = 0.63x - 0.66 \]

\[R^2 = 0.95 \]
CONCLUSIONS

• The magnitude of new production in the Bay of Bengal is comparable to that of the Arabian Sea.

• During the post-monsoon the new production is higher in open ocean locations and during pre-monsoon it is higher at coastal locations indicating the availability of nutrients by different sources i.e., due to wind mixing during post-monsoon and by EICC during pre-monsoon.

• Consistent high new production may be one of the reasons for comparable organic carbon fluxes in Arabian Sea and Bay of Bengal for longer time scale.
Important Findings in Southern Indian Ocean

1. Nitrate is preferred over urea and ammonia in the Southern Ocean

2. f-ratio is moderately high

3. Although the Southern Ocean has more chlorophyll than the equatorial region, productivity is low. This is because production per unit chlorophyll in this region is very low due to lack of Iron.

4. despite a lesser standing stock of phytoplankton the equatorial region is more productive. This is because production per unit chlorophyll is very high as this region receives iron dust from Asian and African sub-continents.
Thank You
f-ratio and total production during post- and pre-monsoon season

\[f\text{-ratio} = \frac{0.94 \times PP}{2.39 + PP} \]
Analytical Uncertainties

<table>
<thead>
<tr>
<th>Error in percentage</th>
<th>PON</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>15N atom% of</td>
<td>Nitrate</td>
<td>< 0.20</td>
</tr>
<tr>
<td></td>
<td>Ammonia</td>
<td>< 3.57</td>
</tr>
<tr>
<td></td>
<td>Urea</td>
<td>< 1.4</td>
</tr>
</tbody>
</table>
Red Square - SK-182
Green triangle - SK-191
Blue circle - SK-186 (consr)

Total Production (mmol N m\(^{-2}\) d\(^{-1}\))

New Production (mmol N m\(^{-2}\) d\(^{-1}\))

Watts and Owens (1999)
Watts and Owens conservative
Our Study
Vertical Profile of nitrate during post-monsoon in the Bay of Bengal (SK-182)

Nitrate (μM)

Depth (m)

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

PP9

Nitrate (μM)
Vertical profile of nitrate during premonsoon in the Bay of Bengal (SK-191)