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Laboratory for Ichthyology and Coastal Fishery, Institute 
of Oceanography and Fisheries, Split, Croatia (Hrvatska)

Jadran Faganeli
Marine Biology Station Piran, National Institute of 
Biology, Piran, Slovenia

Serena Fonda Umani
Department of Life Science, University of Trieste, 
Trieste, Italy

Janja Francé
Marine Biology Station Piran, National Institute of 
Biology, Piran, Slovenia

Michele Giani
National Institute of Oceanography and Applied 
Geophysics - OGS, Trieste, Italy     

Lora A. Harris
Chesapeake Biological Laboratory, University of 
Maryland Center for Environmental Science, Solomons, 
MD, 20688, USA

Raleigh Hood 
Horn point Laboratory, University of Maryland Center 
for Environmental Science, Cambridge, MD 21613, 
USA

W. Michael Kemp
Horn Point Environmental Laboratory, University 
of Maryland Center for Environmental Science, 
Cambridge, MD 21613, USA

Victor S. Kennedy
Horn Point Laboratory, University of Maryland  
Center for Environmental Science, Cambridge,  
MD, USA



viii List of CoNtRiBUtoRs

Tjaša Kogovšek
Marine Biology Station Piran, National Institute of 
Biology, Piran, Slovenia

Nives Kovač
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Marine Biology Station Piran, National Institute of 
Biology, Piran, Slovenia

Lovrenc Lipej
Marine Biology Station, National Institute of Biology, 
Piran, Slovenia

Davor Lučic ́
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Marine Biology Station Piran, National Institute of 
Biology, Piran, Slovenia

Cristina Munari
Department of Chemical and Pharmaceutical Sciences, 
University of Ferrara, Ferrara, Italy

Meghann Niesen
Chesapeake Biological Laboratory, University of 
Maryland Center for Environmental Science, Solomons, 
MD, 20688, USA

Nives Ogrinc
Department of Environmental Science, Jozef Stefan 
Institute, Ljubljana, Slovenia

Martina Orlando-Bonaca
Marine Biology Station, National Institute of Biology, 
Piran, Slovenia

Cindy Palinkas
Horn Point Laboratory, University of Maryland Center for 
Environmental Science, Cambridge, MD, 21613, USA

James Pierson 
Horn point Laboratory, University of Maryland Center for 
Environmental Science, Cambridge, MD 21613, USA

Lorie Staver
Horn Point Laboratory, University of Maryland Center for 
Environmental Science, Cambridge, MD, 21613, USA

J. Court Stevenson
Horn Point Laboratory, University of Maryland 
Center for Environmental Science, Cambridge, MD, 
21613,USA

Mario Tamburri
Chesapeake Biological Laboratory, University of 
Maryland Center for Environmental Science, Solomons, 
MD, 20688, USA

Jeremy M. Testa
Chesapeake Biological Laboratory, University of 
Maryland Center for Environmental Science, Solomons, 
MD, 20688, USA

Tinkara Tinta
Marine Biology Station Piran, National Institute of 
Biology, Piran, Slovenia; and Department of Limnology 
and Biological Oceanography, University of Vienna, 
Vienna, Austria



List of CoNtRiBUtoRs ix

Valentina Tirelli
National Institute of Oceanography and Applied 
Geophysics - OGS, Trieste, Italy

Cecilia Totti
Department of Life and Environmental Sciences, 
Università Politecnica delle Marche, Ancona,  
Italy

Valentina Turk 
Marine Biology Station Piran, National Institute of 
Biology, Piran, Slovenia

Cinzia De Vittor
Section of Physical, Chemical, and Biological 
Oceanography, National Institute of Oceanography and 
Experimental Geophysics, Trieste, Italy

Martin Vodopivec
Marine Biology Station Piran, National Institute of 
Biology, Piran, Slovenia

Michael J. Wilberg
Chesapeake Biological Laboratory, University of 
Maryland Center for Environmental Science, Solomons 
MD, 20688, USA 

Ryan J. Woodland
Chesapeake Biological Laboratory, University of 
Maryland Center for Environmental Science, Solomons, 
MD, 20688, USA

Qian Zhang
University of Maryland Center for Environmental Science, 
USEPA Chesapeake Bay Program, Annapolis, MD, USA



A series of workshops was hosted in the 1990s by the 
Marine Biology Station Piran of the National Institute 
of Biology (Slovenia), the Centre for Marine Research of 
the Ruđer Bošković Institute Rovinj (Croatia), and the 
Horn Point Laboratory of the University of Maryland 
Center for Environmental Science (USA). Their purpose 
was to advance our understanding of how coastal ecosys-
tems are responding to cultural eutrophication, coastal 
development, and fishing pressure through a comparative 
analysis of the Northern Adriatic Sea and Chesapeake 
Bay, two river‐dominated systems with urbanized water-
sheds that support extensive industrial agriculture.

These workshops led to the 1999 publication of 
Ecosystems at the Land–Sea Margin: Watershed to the 
Coastal Sea as part of the AGU Estuarine and Coastal 
Sciences Series. The comparative analysis was under-
taken in order to improve our understanding of how 
coastal ecosystems are responding to the pressures of 
human expansion. The focus was on impacts of local 
anthropogenic pressures that are occurring globally 
(coastal development, habitat loss, nutrient pollution, 
and fisheries) and was based on research conducted dur-
ing the 1980s and 1990s.

Revisiting these two ecosystems two decades later pro-
vides an opportunity to assess changes in anthropogenic 
pressures (including climate‐driven changes) that have 
occurred in the past two decades and to inform eco-
system‐based approaches to managing multiple anthro-
pogenic pressures on coastal marine ecosystem services. 
In addition, we hope that this publication will foster 
international collaboration and information exchange on 
the ecology and value of coastal ecosystems in the 
Anthropocene.

The chapters that follow include updates on current 
anthropogenic pressures with an emphasis on the effects 

of nutrient enrichment and climate change on the extent 
and condition of critical coastal habitats, patterns of 
stratification and circulation, food‐web dynamics from 
phytoplankton to fish, nutrient cycling, water quality, 
and harmful algal events. A common theme running 
throughout is the causes and consequences of interannual 
variability and secular trends in annual cycles and means.

Publication of this book commemorates the 50th anni-
versary of Slovenia’s Marine Biology Station Piran, the 
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2
Recent Status and Long‐Term Trends in Freshwater  

Discharge and Nutrient Inputs

Qian Zhang1, Stefano Cozzi2, Cindy Palinkas3, and Michele Giani4

ABSTRACT

Anthropogenic inputs of nutrients via river runoff are the primary drivers of ecosystem degradation in 
Chesapeake Bay (CB) and the northern Adriatic Sea (NAS). The annual cycle of river flow is typically unimodal 
in CB (seasonal peak during spring) and bimodal in the NAS (peaks during April–June and October–December). 
Dissolved inorganic nitrogen accounts for most of the total nitrogen (TN) in both systems. During 1985–2015, 
annual loads of TN to CB tended to decrease while total phosphorus (TP) loads tended to increase. In contrast, 
annual loads of TN to the NAS tended to increase while TP loads tended to decrease. However, these annual 
input trends were significant only for dissolved inorganic P in the NAS, whereas in the case of N they were 
masked by interannual changes of the runoff. Climate‐driven changes in the water cycle may bring new chal-
lenges of controlling nutrient loading in CB, where annual rainfall is expected to increase. In contrast, annual 
rainfall is projected to decrease in the NAS region, which would aid efforts to control nutrients. An additional 
challenge unique to CB is the filling up of Conowingo Reservoir on the Susquehanna River, which resulted in 
increased P and sediment loads due to reduced trapping efficiency.

2.1. INTRODUCTION

Increasing anthropogenic inputs of nitrogen (N), phos-
phorus (P), and sediments to the coastal ocean via river 
discharge over the past 100 years are primary drivers of 
ecosystem degradation in many estuarine and coastal 
 systems worldwide, including Chesapeake Bay (CB) and 
the northern Adriatic Sea (NAS) (Degobbis, 1989; Giani 
et al., 2012; Hagy et al., 2004; Kemp et al., 2005; Murphy 

et al., 2011; Salvetti et al., 2006; Testa et al., 2014; Zhang 
et al., 2018). The effects of these inputs include the annual 
recurrence of seasonal hypoxia, declines in water trans-
parency, habitat loss, and loss of biodiversity (Boesch 
et  al.,  2001; Breitburg et  al.,  2018; Cloern,  2001; 
Degobbis,  1989; Diaz & Rosenberg,  2008; Giani 
et  al.,  2012; Kemp et  al.,  2005; Testa et  al.,  2019). 
Consequently, reducing land‐based inputs of N, P, and 
sediments have long been a management priority for both 
CB and the NAS.

In CB, severe bottom‐water hypoxia and loss of sub-
merged aquatic vegetation (SAV) were first evident in the 
1950s and 1960s, respectively (Kemp et  al.,  2005). In 
subsequent decades, restoration of SAV was a largely 
uncoordinated voluntary effort. In 1983, the US 
Environmental Protection Agency (USEPA) signed the 
first Chesapeake Bay Agreement with four jurisdictions 
in the bay’s watershed, and the Chesapeake Bay Program 

1 University of Maryland Center for Environmental Science, 
USEPA Chesapeake Bay Program, Annapolis, MD, USA

2 Institute of Marine Science, National Research Council, 
Trieste, Italy

3 Horn Point Laboratory, University of Maryland Center for 
Environmental Science, Cambridge, MD, USA

4 National Institute of Oceanography and Applied 
Geophysics - OGS, Trieste, Italy
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was formed to coordinate and facilitate multijurisdic-
tional efforts to restore CB by reducing nutrient and sed-
iment inputs. Subsequent agreements set goals of 
reducing nutrient inputs by 40% by 2000 and to improve 
CB water quality sufficiently to remove it from the “dirty 
waters list” by 2010 (Boesch et al., 2001). Years later, it 
was realized that this deadline would not be met. 
Consequently, the USEPA established the Total 
Maximum Daily Load for CB (US Environmental 
Protection Agency,  2010), which mandates state‐wide 
efforts to establish watershed implementation plans to 
reduce nutrient and sediment runoff (Linker, Batuik, 
et  al.,  2013; Shenk & Linker,  2013). In 2014, the 
Chesapeake Bay Watershed Agreement established goals 
and outcomes for clean water, sustainable fisheries, vital 
habitats, toxic contaminants, healthy watersheds, stew-
ardship, land conservation, public access, environmental 
literacy, and climate resiliency (Chesapeake Bay 
Program, 2014).

Since the 1970s, seasonal hypoxic and anoxic events in 
the NAS have been observed along the western coast and 
in the northernmost Gulf of Trieste, with episodic events 
occurring offshore (Alvisi & Cozzi,  2016; Djakovac 
et al., 2012; Stachowitsch, 2014). The quality of marine 
waters was also degraded by toxic dinoflagellate blooms 
and massive accumulations of mucilaginous aggregates 
(Djakovac et al., 2012; Giani et al., 2012). The economic 
impacts of these events (primarily on tourism) resulted in 
Italian regulations in 1986 to reduce polyphosphates in 
detergents and in the establishment of the Po Basin 
Authority in 1989 to manage nutrients inputs to the Po 
River, the largest tributary of the NAS (Seagle et al., 1999). 
In 2000, the Water Framework Directive 2000/60/EC 
(WFD) of the European Union (EU) established a frame-
work for member states to achieve good ecological and 
chemical status objectives for inland surface waters, estu-
aries, and coastal waters within 1 nautical mile from shore 
through watershed management by 2015 (Teodosiu 
et  al.,  2003). In 2013, the Management Plan of the Po 
River (PdGPo 2010) was approved, which opened a new 
phase for water management and for the reduction of 
nutrient loads, through the realization of spill basins for 
agriculture and manure wastes and the implementation of 
the wastewater collection and depuration systems 
(Bortone, 2014). However, 15 years after the directive was 
agreed to, achieving its objectives remains a challenge, 
with 47% of EU surface waters not reaching good status 
in 2015 (Voulvoulis et al., 2017). To achieve the objectives 
of the WFD, a more integrated understanding of the rela-
tionships between land‐use practices in coastal watersheds 
and the status of surface waters is needed.

The main objective of this chapter is to review and 
compare the current status, seasonality, and long‐term 
trends of freshwater and nutrient inputs to CB and the 

NAS. We begin with an overview of the two watersheds 
followed by a comparison of freshwater inputs in terms 
of their seasonality and long‐term trends. We then com-
pare nutrient and sediment loads from the watersheds, 
elucidate the controls of nutrient and sediment export, 
highlight some of the major challenges to achieving 
reductions in land‐based inputs, and conclude with rec-
ommendations for the management and restoration of 
CB and the NAS.

2.2. OVERVIEW OF THE WATERSHED 
AND FRESHWATER INPUTS

Chesapeake Bay is a large estuary in the Mid‐Atlantic 
region of the United States. Among its many tributaries, 
nine account for over 90% of river flow into CB (Chanat 
et  al.,  2016; Moyer et  al.,  2012). The watershed of the 
Susquehanna River, the largest river discharging directly 
into the mainstem bay, comprises about 43% of total CB 
watershed and is dominated by forested areas (~65%). The 
NAS is a shallow, semienclosed arm of the NE 
Mediterranean Sea. The Po River, the largest river dis-
charging into the NAS, has a watershed that comprises 
67% of the total NAS watershed and hosts large urban and 
industrial settlements, as well as extended areas of intensive 
cropping and livestock activities (Seagle et al., 1999).

River flows into CB, and associated inputs of  nutrients 
and sediments, are monitored by the US Geological 
Survey (US Geological Survey, 2018). For the NAS, flow 
rates of  Italian rivers are monitored the Hydrographic 
and Mareographic National Service of  Italy (1917–
1990s) and the Regional Environmental Protection 
Agencies (1990s to today). Nutrient data were obtained 
from the scientific literature, monitoring programs, and 
past projects (Cozzi & Giani, 2011; Cozzi et al., 2019). 
Data for the Istrian Rivers were provided by the 
Environmental Agency of  the Republic of  Slovenia, the 
Croatian Meteorological and Hydrological Service, and 
the European Environmental Agency.

The volume transports (Q) of major rivers flowing into 
CB and the NAS are similar and exhibited strong interan-
nual variability during 1985–2015 (Figure  2.1). On 
average, the Susquehanna accounts for 62% of riverine 
inputs of freshwater while the Po accounts for 69%. The 
highest transports in CB watershed occurred during the 
years 1996, 2004, and 2011 in association with major hur-
ricanes and tropical storms (Figure 2.1a). River flows to 
the NAS were characterized by a maximum during 2014 
and lows during the drought period of 2003–2007 
(Figure 2.1b).

The volume transports of major rivers flowing into CB 
and the NAS show strong seasonal variability. Seasonal 
peaks tended to occur during January–March and April–
June in CB rivers (Figure 2.1c). In comparison, seasonal 
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peaks tended to occur during April–June and October–
December in the NAS (Figure 2.1d). Direct precipitation 
to the sea surface was estimated to account for 14–29% of 
seasonal freshwater input to CB and for 10–23% of the 
input to the NAS. For both systems, direct precipitation 
is more important in July–September relative to other 
months that have higher Q.

Freshwater inputs to CB and the NAS were further 
compared on a centennial scale using data from the 
Susquehanna and Po Rivers. During 1900–2015, the 
Susquehanna annual Q has an estimated Mann–Kendall 
(MK) trend slope of ‐0.0063 km3 year−1 (p = 0.79). On a 
seasonal basis, Susquehanna Q had negative slopes in all 
four seasons, i.e., ‐0.010, ‐0.038, ‐0.095, and ‐0.025 km3 
year−1 in January–March, April–June, July–September, 
and October–December, respectively, with the latter three 
trends being statistically significant. During 1917–2015, 
the Po annual Q has an estimated trend slope of 0.016 km3 
year−1 (p = 0.86). On a seasonal basis, Po Q was estimated 

to have positive slopes in January–March (0.0050 km3 
year−1) and October–December (0.0006 km3 year−1) and 
negative slopes in April–June (‐0.012 km3 year−1) and 
July–September (‐0.015 km3 year−1), with the July–
September trend being statistically significant.

2.3. NUTRIENT INPUTS

2.3.1. Recent Status: 2004–2012

Median annual inputs of nutrients and sediment in 
2004–2012 to CB and the NAS are summarized in 
Table 2.1. NOx (nitrate + nitrite) accounts for most of the 
TN load, whereas dissolved inorganic P (DIP) is a minor 
fraction of the TP load. Among the nine major tribu-
taries, the Susquehanna contributes about 65% of TN 
and 46% of TP (Zhang et al., 2015). Relative to riverine 
inputs, inputs from direct precipitation to CB are small 
(7% of TN and 17% of TP).
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Figure 2.1 Time series of annual freshwater input to (a) Chesapeake Bay and (b) northern Adriatic Sea and 
boxplots of seasonal freshwater input to (c) Chesapeake Bay and (d) northern Adriatic Sea in the period of 1985–
2015, including input from the largest river (Susquehanna and Po, respectively), input from all major tributaries, 
and direct wet precipitation.
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Compared with CB, riverine inputs of  nutrients to the 
NAS are much higher (Table 2.1), with riverine inputs of 
anthropogenic nutrients to the western NAS (dominated 
by the Po River) accounting for 80%, 83%, 84%, and 
73% of annual inputs of  TN, NOx, TP, and DIP, respec-
tively. This reflects the higher population density in river 
watersheds of  the western shore. Notably, nutrient inputs 
to the NAS are much lower than those to CB when nor-
malized to the volume of the receiving water bodies 
(~1812 × 103 kg N km−3 year−1 for CB vs. ~285 × 103 kg 
N km−3 year−1 for the NAS). In addition, the TN/TP 
molar ratio for CB is much lower than for the NAS (33:1 
vs. 41:1) while the NOx/DIP molar ratio for CB is much 
higher than for the NAS (141:1 vs. 72:1).

2.3.2. Seasonality (2004–2012)

For both CB and the NAS, nutrient and sediment loads 
show strong seasonal variability (Figure 2.2). For CB, the 
annual input cycles of freshwater, TN, TP, and suspended 
sediment (SS) are typically unimodal with maxima dur-
ing March–April and minima during July–August. This 
pattern has been reported for TN in all the major tribu-
taries to CB (Zhang et al., 2015). For the NAS, the annual 
input cycles of freshwater, TN, and TP tend to be more 
bimodal with high inputs during April–June and 
October–December and low inputs during January–
March and July–September.

2.3.3. Long‐Term Trends (1985–2015)

Interannual variations in Susquehanna annual loads of 
TN and NOx have negative MK slopes while TP and SS 
have positive slopes (Figure 2.3). Although these slopes 
are not statistically significant, their directions are consis-
tent with results of flow‐normalized loads (Zhang 
et  al.,  2015) that account for interannual variability in 
river flow (Hirsch et al., 2010). Declines in TN and NOx 
were partially due to upgraded wastewater treatment 
(Boynton et al., 2008) and decreases in atmospheric depo-
sition due to the Clean Air Act (Eshleman et al., 2013; 
Linker, Dennis, et  al.,  2013). By contrast, TP and SS 

loads have increased since the late 1990s, likely due to 
declining trapping efficiency of the Conowingo Dam in 
the lower Susquehanna (Hirsch,  2012; Langland,  2015; 
Zhang, Ball, et al., 2016; Zhang et al., 2013).

Interannual variations in the Po River annual load of 
TN had a positive MK slope while loads of NOx, TP, DIP, 
and SS had negative slopes (Figure 2.3). The only statisti-
cally significant trend for Po is with DIP, which shows a 
long‐term reduction after the peak in the 1980s. This 
pattern can be attributed to a reduction of P content in 
fertilizers and detergents, as well as improved management 
of wastewaters (Cozzi & Giani, 2011; Viaroli et al., 2018). 
By contrast, N loads have been driven by interannual 
oscillations from persistent anthropogenic N emission in 
the watershed and by interannual changes in river flow, 
particularly during the extreme drought of 2003–2007 
(Cozzi et al., 2019). Current transport of SS by the Po is 
high compared to river flow, due to large SS contributions 
by the Apennine tributaries and the absence of dams in 
the lower river (Tesi et al., 2013). Transport of SS to the 
NAS is critical for the maintenance of delta and along‐
shore habitats, as well as for sedimentation processes in 
the western Adriatic Sea (Frignani et al., 2005). Despite 
SS transport decreases during the previous century, the 
present estimates suggest that SS loads have not changed 
significantly since the 1980s.

2.4. CONTROLS OF NUTRIENT EXPORT

2.4.1. Nutrient Sources

Watershed export of nutrients is complex due to het-
erogeneities in their sources, fates, and transports. In 
terms of sources, agriculture nonpoint sources, atmo-
spheric deposition, urban (storm water) sources, as well 
as point sources (wastewater treatment plants) account 
for most inputs to CB and the NAS watersheds (Ator 
et  al.,  2011; Palmeri et  al.,  2005; Salvetti et  al.,  2006; 
Viaroli et al., 2018; Volf  et al., 2013). Globally, there is a 
significant linear correlation between net anthropogenic 
N supplies to coastal watersheds and total riverine 

Table 2.1 Median annual inputs of freshwater (Q, km3) and nutrients (106 kg year−1) to Chesapeake Bay (CB) and the northern 
Adriatic Sea (NAS) due to river runoff and precipitation (PPT) for the years 2004–2012

Parameter

CB NAS

Rivers PPT Total Western rivers Northern rivers Eastern rivers PPT Total

Q 54.7 13.8 68.5  52.6  5.9 3.2  9.4  71.1
TN 84.9  5.7 90.6 145.0 16.0 6.3 13.6 180.9
NOx 56.7  2.5 59.2 101.0 12.0 4.3  5.0 122.3
TP  5.2  0.9  6.1   8.1  0.4 0.1  1.1   9.7
DIP  0.7  0.2  0.9   2.7  0.1 0.04  0.9   3.7

Note: TN, total nitrogen; NOx = nitrate + nitrite; TP, total phosphorus; DIP, dissolved inorganic phosphorus.
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Figure 2.2 Boxplots showing seasonal loads of (a) total nitrogen (TN), (b) nitrate + nitrite (NOx), (c) total phos-
phorus (TP), (d) dissolved inorganic phosphorus (DIP), and (e) suspended sediment (SS) to Chesapeake Bay (four 
boxes on the left) and the northern Adriatic Sea (four boxes on the right) from tributaries with available data (9 and 
13 tributaries, respectively) in 2004–2012.
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nitrogen export to the coastal ocean (Boyer & 
Howarth,  2008). However, it should be noted that the 
major sources and their relative contributions can vary 
significantly both spatially (as a function of watershed 
characteristics such as land use, climate, and geology) 
and temporally (as a function of watershed management, 
urbanization) (Ator et al., 2011; Carpenter et al., 1998).

For the CB watershed, riverine export of TN was dom-
inated by agriculture nonpoint sources (fertilizer and 

manure 54%), followed by contributions from atmo-
spheric deposition (17%), point sources (16%), and urban 
sources (12%). Riverine export of TP was dominated by 
agriculture nonpoint sources (43%), followed by point 
sources (32%) and urban sources (11%) (Ator et al., 2011). 
Typically, nutrients accumulate in watersheds during dry 
periods of low flows and are transported to receiving 
waters via groundwater discharge and surface water 
runoff during wet periods and storm events (Shields 
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et al., 2008; Tesi et al., 2013). Groundwater can represent 
a major fraction of riverine load (especially N). Bachman 
et al. (1998) estimated that base flow (a proxy of ground-
water input) accounted for 17–80% (median 48%) of the 
TN load at 36 CB monitoring sites. In addition, riverine 
export can be strongly modulated by reservoirs. For 
example, Conowingo Reservoir and two others in the 
lower Susquehanna River historically trapped about 2%, 
45%, and 70% of annual N, P, and SS load, respectively 
(Langland & Hainly, 1997).

Riverine inputs of TN to the NAS were also dominated 
by agriculture nonpoint sources (40%) followed by point 
and urban sources (27%), and groundwater (29%). The 
TP load mainly originated from point sources and urban 
sources (43%) and agriculture nonpoint sources (36%) 
(Volf et al., 2013). For the Po watershed, TN load comes 
from point sources (40%), nonpoint sources (20%), and 
groundwater and springs (40%), whereas TP loads come 
from point sources (80%) and nonpoint sources (20%) 
(Salvetti et al., 2006).

2.4.2. Controlling Factors

In the CB watershed, several controlling factors have 
been identified for nutrient export in the Susquehanna 
River (Zhang, Ball, et al., 2016). First, river flow dominates 
the interannual variability of constituent export. Second, 
land‐use patterns strongly affect the relative contribution of 
the subwatersheds. Specifically, long‐term median yields of 
N, P, and SS all correlate positively with the fraction of the 
watershed that is not forested. Third, riverine loads from 
different Susquehanna subwatersheds have generally 
declined due to reductions in source input over the same 
period. Finally, dams and reservoirs can strongly modulate 
the storage and release of particulate constituents and the 
extent of modulation has varied considerably over time as 
reservoirs fill. Two decades ago, the Conowingo Reservoir 
and two others in the lower Susquehanna River trapped 
about 2%, 45%, and 70% of annual N, P, and SS load, 
respectively (Langland & Hainly, 1997). Currently, the res-
ervoir system is no longer an effective trap of these constit-
uents (Hirsch, 2012; Langland, 2015; Zhang et al.,  2013; 
Zhang, Hirsch, et al., 2016).

In the NAS watershed, the annual export of nutrient and 
sediment is directly linked to river flow and can be esti-
mated using Po River loads as a reference (Cozzi & 
Giani,  2011). However, the short‐term dynamics of riv-
erine loads are complicated during freshets by the effects 
of flow on the erosion, groundwater inputs, dilution, and 
biological processes in the river environment (Marchina 
et al., 2015; Tesi et al., 2013). The N and P loads in the 
marine environment have long‐term trends consistent with 
watershed inputs from industrial activities, agriculture, 
livestock, urban settlements, and atmospheric deposition; 

dynamics of their delivery are also modulated by the vari-
able retention of these elements in soils and aquifers (Cozzi 
et al., 2019; Palmeri et al., 2005; Salvetti et al., 2006; Viaroli 
et al., 2018). In general, retention mechanisms differ con-
siderably between N and P—sedimentation may be the 
major retention mechanism for particulate P during over-
land flow conditions (Cirmo & McDonnell,  1997; 
Hoffmann et  al.,  2009), whereas sorption/desorption 
reactions and denitrification are more important for P 
and  N, respectively, during subsurface flow conditions 
(House, 2003; Withers & Jarvie, 2008).

2.4.3. Watershed Management

For CB, coordinated efforts have been implemented to 
reduce pollutant inputs since the first Chesapeake Bay 
Agreement was signed in 1983. Here we provide a brief  
overview of historical changes in management and prac-
tices associated with point, agricultural, and stormwater 
sources in the Susquehanna River (Zhang et al., 2013). 
For point sources, the more important historical con-
trols were the P ban in detergents (Litke, 1999) and the 
adoption of  increasingly effective nutrient removal tech-
nologies at wastewater treatment plants (Chesapeake 
Executive Council,  1988). For agriculture nonpoint 
sources, many strategies have focused on controlling fer-
tilizer and manure applications, including regulations on 
storage and usage of  animal manure and regulations 
on  concentrated animal operations and feeding opera-
tions (New York State Department of Environmental 
Conservation,  2007; Pennsylvania Department of 
Environmental Protection,  2004; US Department of 
Agriculture and US Environmental Protection 
Agency, 1999). For stormwater sources, the USEPA initi-
ated the National Pollutant Discharge Elimination System 
Phase I regulations in 1990 for Municipalities with 
Separate Storm Sewer Systems (MS4s) serving popula-
tions of 100,000 or more (US Environmental Protection 
Agency,  2000) and expanded the program in 1999 to 
include smaller MS4s (US Environmental Protection 
Agency, 2000). States also took actions to promulgate reg-
ulations on stormwater discharges in the late 1990s to 
early 2000s (New York State Department of Environmental 
Conservation,  2007; Pennsylvania Department of 
Environmental Protection, 2004).

For the NAS, efforts were made by Italian regulators to 
progressively reduce P content in detergents to 1% (6% 
for automatic laundry detergents) in 1989 (Marchetti 
et al., 1989; Rinaldi, 2014). In that year, industries also 
substituted sodium‐triphosphate‐based detergents with 
zeolite A (Glennie et al., 2002). The control of N loads 
has been improved recently with the adoption of the 
European Nitrates Directive (91/676/EEC). However, the 
reduction of N loads was less effective compared to that 
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of P loads, because N is largely contributed by nonpoint 
sources (Viaroli et  al.,  2010,  2018). The creation of 
designated Authorities for specific hydrographic basins 
and of Regional Environmental Protection Agencies in 
1994 further supported a coordinated monitoring of 
continental waters in Italy. The main measures adopted 
to reduce eutrophication from river loads were (a) estab-
lishment of spill basins and manure wastes for crop and 
livestock farming, (b) implementation of good farming 
practices in vulnerable areas, and (c) implementation of 
the Urban Waste Water Treatment Directive (91/271/
EEC) (Bortone, 2014).

The N and P inputs in the NAS are not limited to riv-
erine inputs. Direct inputs to the NAS occur via ground-
water discharge and treatment plants, but are poorly 
quantified. Groundwater aquifers, particularly in the NE 
Adriatic region, are very sensitive to external pollution 
due to their large draining capacity of  surface waters 
and low self‐cleaning potential (The EU.WATER 
Project, 2010). For treatment plants, several underwater 
pipelines have been built since the 1980s, especially in the 
NE Adriatic region. Despite a gradual upgrade of 
treatment plants from secondary to tertiary treatment, 
wastewater loads continue to be an important source of 
nutrients in the NAS (Cozzi et  al.,  2014; Scroccaro 
et al., 2010; Sekulić et al., 2004; Volf  et al., 2018).

2.5. MAJOR CHALLENGES

2.5.1. Legacy Sources

Many restoration efforts around the world have not 
yet achieved significant progress in reducing riverine 
loads of  nutrient and sediment due to challenges such 
as legacy inputs, which accumulate and are stored in 
groundwater aquifers and sediments. Such effects have 
been documented for watersheds in North America 
(e.g., Chesapeake Bay, Mississippi River, and Lake 
Erie) and Europe (Basu et al., 2010; Jarvie et al., 2013; 
Sharpley et al., 2013; Van Meter et al., 2017; Van Meter 
et  al.,  2017,  2018; Vero et  al.,  2017). For CB, there is 
strong evidence for the importance of  legacy sources. 
For example, riverine loads in the Susquehanna 
remained relatively constant in the past 30 years despite 
strong reductions in anthropogenic inputs to water-
sheds (Zhang, Ball, et  al.,  2016). Such patterns may 
reflect the effects of  legacy sources (Basu et al., 2010; 
Thompson et al., 2011). Van Meter et al. (2017) reported 
that N dynamics in the Susquehanna are dominated by 
groundwater legacies, with 18% of  the current annual N 
input to the river being at least 10 years old. Apparent 
ages of  groundwater in the CB watershed can reach 20 
years or more (Focazio et  al.,  1997) and base flow 
accounts for a major fraction of  riverine N load at 

many CB sites (Bachman et al., 1998). For this region, 
the legacy stores are comprised primarily of  ground-
water for N (Bachman et  al.,  1998; Sanford & 
Pope,  2013), surface soils and river sediments for P 
(Ator et  al.,  2011; Sharpley et  al.,  2013), and stream 
corridors and reservoir beds for sediment (Gellis 
et al., 2008; Pizzuto et al., 2014; Walter & Merritts, 2008). 
These results suggest the importance of  considering lag 
time between implementation of  management actions 
and achievement of  water‐quality improvement. For 
the NAS, budget estimates indicate the accumulation in 
river watersheds of  inorganic and organic N and P from 
anthropogenic sources that still negatively affect the 
quality of  freshwater systems (Giani et al., 2012; Viaroli 
et  al.,  2018; Volf  et  al.,  2018) and river‐dominated 
coastal areas (Alvisi & Cozzi, 2016).

2.5.2. Climate Change

Climate change is another major challenge to eco-
system restoration (Charlton et  al.,  2018; Forber 
et  al.,  2018; Meier et  al.,  2018; Rankinen et  al.,  2016; 
Sinha et al., 2017). In general, climate change is expected 
to result in increased air and water temperature and an 
acceleration of the water cycle (Bloschl et al., 2017; Milly 
et  al.,  2005; Najjar et  al.,  2010; Rice & Jastram,  2014; 
Rice et al., 2017), which can alter the volume transport of 
freshwater and inputs of nutrients and sediments. For 
example, Sinha et  al. (2017) estimated that climate‐
change‐induced precipitation changes alone will substan-
tially increase (19 ± 14%) riverine inputs of TN within 
the continental United States by the end of the century. 
In addition, the effects of climate change can differ 
among seasons. For CB, projected acceleration of the 
water cycle is expected to increase river runoff and asso-
ciated inputs of nutrients and sediments during winter–
spring and to decrease runoff during summer–fall 
(Wagena et  al.,  2018). Thus, management strategies for 
CB need to account for the impact of projected climate 
change on water quality. In this context, modeling and 
assessment is underway in the Chesapeake Bay Program 
partnership to evaluate the effects of climate change on 
nutrient export, efficacy of best management practices, 
and water quality in the estuary.

In contrast, climate‐driven changes in the water cycle 
in the NAS watershed may tend toward persistent 
periods of  low runoff  alternating with episodic events 
of  high discharge. Climate change appears to be 
increasing the frequency of  heavy precipitation events 
(Alcamo et al., 2007). This has yet to induce long‐term 
changes in the annual discharge of  the Po River, which 
has greatly oscillated over the past three decades 
without showing clear trends (Cozzi & Giani,  2011). 
However, flow dynamics of  Po River are characterized 
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by a shift towards early spring peaks of  runoff 
(Zampieri et al., 2015) and a decline in summer flows 
(Cozzi et al., 2019). At the same time, the other NAS 
rivers have shown a strong reduction in flow (Cozzi 
et al., 2012). It is important to note that reductions in 
river flow can result from both a greater anthropogenic 
use of  continental waters as well as from climate‐driven 
changes. For example, annual runoff  to Adriatic rivers 
of  Slovenia were reduced (6%) in 1971–2000 due to 
increased evapotranspiration of  the soils (11%), even 
in  the presence of  relatively constant precipitation 
(Frantar, 2007).

2.5.3. Reservoir Filling

A major challenge that is unique to CB is the filling of 
the Conowingo Reservoir of the Susquehanna River 
which has neared its sediment storage capacity after 90 
years of operation. As sediment accumulates in this reser-
voir, the cross‐sectional area available for flow, and the 
vertical depth from water surface to sediment bed, 
decreases, thereby increasing the average horizontal flow 
velocity. Consequently, sediment trapping by the reser-
voir decreases and sediment load to CB increases. 
Numerous studies have demonstrated the declining trap-
ping performance of this reservoir in recent decades 
(Hirsch, 2012; Langland, 2015; Zhang et al., 2013; Zhang, 
Hirsch, et  al., 2016). Moreover, Zhang, Hirsch, et  al. 
(2016) reported that such decline in reservoir trapping 
has occurred under a wide range of flow conditions. 
These changes, if  not addressed, can hinder the attain-
ment of the Chesapeake Bay Total Maximum Daily Load 
goals because the reservoir was expected to continue 
trapping sediments and nutrients at historical rates for 
another 20–30 years when those goals were established in 
2010. Thus, the Chesapeake Bay Program partnership 
has worked to incorporate recent scientific understanding 
in upgrading its watershed model to better capture the 
temporal changes in reservoir function (Linker, Batuik, 
et al., 2013; Shenk & Linker, 2013), which will be used to 
adjust the goals of nutrient and sediment reductions by 
each jurisdiction.

2.6. IMPLICATIONS AND RECOMMENDATIONS

Anthropogenic riverine inputs of N, P, and sediment 
have led to undesirable consequences in the coastal 
marine environment, including eutrophication and asso-
ciated oxygen depletion, declines in water transparency, 
loss of submerged aquatic vegetation, and shifts in the 
composition of plankton communities (Boesch 
et  al.,  2001; Breitburg et  al.,  2018; Cloern,  2001; 
Degobbis,  1989; Diaz & Rosenberg,  2008; Giani 
et al., 2012; Kemp et al., 2005). Therefore, reduction of 

watershed inputs has been a management priority for 
many coastal marine systems, including CB and the NAS. 
A review of parallel time‐series data on hypoxia and 
watershed loading rates in coastal ecosystems shows that 
oxygen conditions tend to improve rapidly and linearly 
when the primary driver targeted for control is nutrients 
from wastewater treatment plants (Kemp et al., 2009). In 
larger more open systems, where nonpoint nutrient loads 
are more important in fueling eutrophication, responses 
to remediation tend to be nonlinear with hysteresis and 
time‐lags. Nonetheless, there have been some signs of 
ecosystem recovery. For CB, water quality improved with 
time during 1985–2016, which is statistically linked to the 
reduction of riverine inputs of TN (Zhang et al., 2018). 
For the NAS, the reduction of riverine loads of P has 
been an effective method to alleviate eutrophication, even 
with high inputs of N and silicates (Djakovac et al., 2012; 
Giani et al., 2012). However, ecosystem conditions in this 
posteutrophic phase are still not comparable to those in 
pristine environments due to the occurrence of hypoxia 
and degraded benthic habitats in shallow coastal zones 
(Alvisi & Cozzi,  2016; Stachowitsch,  2014). Thus, 
continued reduction of watershed loads is indispensable 
for both CB and the NAS.

After decades of management efforts, the goals of CB 
and the NAS restoration have not yet been fulfilled (Volf  
et al., 2018; Zhang et al., 2018). Moving forward, we pro-
vide the following recommendations:

 • continue monitoring river flows and water quality in 
the major tributaries to CB and the NAS;

 • improve statistical approaches for quantifying riv-
erine constituent loads and trends, including associated 
uncertainties;

 • increase understanding of watershed factors that 
influence riverborne loads and trends (e.g., land use, 
hydrology, source controls) and their relative importance;

 • develop consensus and solutions among stakeholders 
to address the major challenges that hinder the achieve-
ment of restoration goals in a timely fashion (e.g., legacy 
sources, climate change, and reservoir filling);

 • increase understanding of  the effects of  land‐based 
inputs on downstream water quality and ecological 
responses (e.g., dissolved oxygen, water clarity, 
chlorophyll‐a);

 • enhance public awareness of the impacts of anthropo-
genic nutrient loading, management goals and actions, 
progress toward achieving these goals, and major challenges.

In a world with seemingly ubiquitous nutrient enrich-
ment and water‐quality degradation, past and future 
advancement in our scientific understanding on these 
two coastal ecosystems can be valuable resources that 
may guide and facilitate the protection and restoration 
of  estuarine and coastal ecosystems in other geographical 
locations.
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