Publications by Qian Zhang

IAN is committed to producing practical, user-centered communications that foster a better understanding of science and enable readers to pursue new opportunities in research, education, and environmental problem-solving. Our publications synthesize scientific findings using effective science communication techniques.

Nutrient Improvements in Chesapeake Bay: Direct Effect of Load Reductions and Implications for Coastal Management (Page 1)

Nutrient improvements in Chesapeake Bay: Direct effect of load reductions and implications for coastal management

Murphy RR, Keisman J, Harcum J, Karrh RR, Lane M, Perry ES, Zhang Q ·
2022

In Chesapeake Bay in the United States, decades of management efforts have resulted in modest reductions of nutrient loads from the watershed, but the corresponding improvements in estuarine water quality have not consistently followed. Generalize additive models were used to directly link river flows and nutrient loads from the watershed to nutrient trends in the estuary on a station-by-station basis, which allowed for identification of exactly when and where responses are happening.

Read more

Nitrogen in the Chesapeake Bay Watershed A Century of Change 1950-2050 (Page 1)

Nitrogen in the Chesapeake Bay watershed: A century of change, 1950–2050

Clune JW, Capel PD, Miller MP, Burns DA, Sekellick AJ, Claggett PR, Coupe RH, Fanelli RM, Garcia AM, Raffensperger JP, Terziotti S, Bhatt G, Blomquist JD, Hopkins KG, Keisman JL, Linker, LC Shenk GW, Smith, RA, Soroka AM, Webber JS, Wolock DM, Zhang Q ·
10 November 2021

Nitrogen, a critical element in all forms of life, is continuously being passed from nonliving to living matter and then back again, but an excess of this nutrient can have adverse effects on aquatic environments. An understanding of the past, present, and future sources, movement, and fate of nitrogen in the Chesapeake Bay watershed can help inform efforts to bring this cycle back into balance (fig. OV.1).

Read more

Inferring Controls on Dissolved Oxygen Criterion Attainment in the Chesapeake Bay (Page 1)

Inferring controls of dissolved oxygen criterion attainment in the Chesapeake Bay

Langendorf RE, Lyubchich V, Testa JM, Zhang Q ·
2021

Environmental monitoring programs generate multivariate time series for the assessment of ecosystem health. Recent developments in causal inference offer ways to translate these observational data into networks able to explain gains and losses in the trajectories of indicator variables. Here, we present a case study of this approach using surface water dissolved oxygen (DO) criteria attainment across the Chesapeake Bay.

Read more

Chesapeake legacies: The importance of legacy nitrogen to improving Chesapeake Bay water quality (Page 1)

Chesapeake legacies: The importance of legacy nitrogen to improving Chesapeake Bay water quality

Chang SY, Zhang Q, Byrnes DK, Basu NB, Van Meter KJ ·
2021

In the Chesapeake Bay, excess nitrogen (N) from both landscape and atmospheric sources has for decades fueled algal growth, disrupted aquatic ecosystems, and negatively impacted coastal economies. Since the 1980s, Chesapeake Bay Program partners have worked to implement a wide range of measures across the region—from the upgrading of wastewater treatment plants to implementation of farm-level best management practices—to reduce N fluxes to the Bay.

Read more

An approach for decomposing river water-quality trends into different flow classes (Page 1)

An approach for decomposing river water-quality trends into different flow classes

Zhang Q, Webber JS, Moyer DL, Chanat JG ·
2021

A number of statistical approaches have been developed to quantify the overall trend in river water quality, but most approaches are not intended for reporting separate trends for different flow conditions. We propose an approach called FN2Q, which is an extension of the flow-normalization (FN) procedure of the well-established WRTDS (“Weighted Regressions on Time, Discharge, and Season”) method.

Read more

Nutrient Trends and Drivers in the Chesapeake Bay Watershed (Page 1)

Nutrient trends and drivers in the Chesapeake Bay watershed

Hyer KE, Phillips SW, Ator SW, Moyer DL, Webber JS, Felver R, Keisman JL, McDonnell LA, Murphy R, Trentacoste EM, Zhang Q, Dennison WC, Swanson S, Walsh B, Hawkey J, Taillie D ·
26 January 2021

The Chesapeake Bay Program maintains an extensive nontidal monitoring network, measuring nitrogen and phosphorus (nutrients) at more than 100 locations on rivers and streams in the watershed. Data from these locations are used by USGS to assess the ecosystem’s response to nutrient-reduction efforts.

Read more

Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management (Page 1)

Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management

Zhang Q, Fisher TR, Trentacoste EM, Buchanan C, Gustafson AB, Karrh R, Murphy RR, Keisman J, Wu C, Tian R, Testa JM, Tango PJ ·
2021

Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is necessary for developing successful management strategies. Chesapeake Bay has well-documented seasonal and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient limitation have changed in response to nutrient management efforts.

Read more

Potomac Tributary Report: A summary of trends in tidal water quality and associated factors, 1985-2018 (Page 1)

Potomac Tributary Report: A summary of trends in tidal water quality and associated factors, 1985-2018

Keisman J, Murphy RR, Devereux OH, Harcum J, Karrh R, Lane M, Perry E, Webber J, Wei Z, Zhang Q, Petenbrink M ·
18 December 2020

The Potomac Tributary Report summarizes change over time in a suite of monitored tidal water quality parameters and associated potential drivers of those trends for the time period 1985 – 2018, and provides a brief description of the current state of knowledge explaining these observed changes.

Read more

Recent status and long‐term trends in freshwater discharge and nutrient inputs (Page 1)

Recent status and long‐term trends in freshwater discharge and nutrient inputs

Zhang Q, Cozzi S, Palinkas C, Giani M ·
18 December 2020

Anthropogenic inputs of nutrients via river runoff are the primary drivers of ecosystem degradation in Chesapeake Bay (CB) and the northern Adriatic Sea (NAS). The annual cycle of river flow is typically unimodal in CB (seasonal peak during spring) and bimodal in the NAS (peaks during April–June and October–December). Dissolved inorganic nitrogen accounts for most of the total nitrogen (TN) in both systems.

Read more