Long-term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non-tidal Susquehanna River basin to Chesapeake Bay (Page 1)  
location map


Long-term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non-tidal Susquehanna River Basin to Chesapeake Bay

Reduction of nitrogen (N), phosphorus (P), and suspended sediment (SS) load has been a principal focus of Chesapeake Bay Watershed management for decades. To evaluate the progress of management actions in the Bay's largest tributary, the Susquehanna River, we analyzed the long-term seasonal trends of flow-normalized N, P, and SS load over the last two to three decades, both above and below the Lower Susquehanna River Reservoir System. Our results indicate that annual and decadal-scale trends of nutrient and sediment load generally followed similar patterns in all four seasons, implying that changes in watershed function and land use had similar impacts on nutrient and sediment load at all times of the year. Above the reservoir system, the combined loads from the Marietta and Conestoga Stations indicate general trends of N, P, and SS reduction in the Susquehanna River Basin, which can most likely be attributed to a suite of management actions on point, agricultural, and stormwater sources. In contrast, upward trends of SS and particulate-associated P and N were generally observed below the Conowingo Reservoir since the mid-1990s. Our analyses suggest that (1) the reservoirs' capacity to trap these materials has been diminishing over the past two to three decades, and especially so for SS and P since the mid-1990s, and that (2) the Conowingo Reservoir has already neared its sediment storage capacity. These changes in reservoir performance will pose significant new kinds of challenges to attainment of total maximum daily load goals for the Susquehanna River Basin, and particularly if also accompanied by increases in storm frequency and intensity due to climate change. Accordingly, the reservoir issue may need to be factored into the proper establishment of regulatory load requirements and the development of watershed implementation plans.

Keywords: Susquehanna River Basin, Chesapeake Bay, Nutrient and sediment loadings, Long-term seasonal trends, Flow normalization

Author(s)Zhang Q, Brady DC, Ball WP
IAN Author(s)Qian Zhang
Journal / BookScience of the Total Environment 452–453: 208-221
Year2013
TypePaper | Journal Article
Location(s)Susquehanna River
Number of Pages14
Link https://doi.org/10.1016/j.scitotenv.2013.02.012