Publications by Richard Tian

IAN is committed to producing practical, user-centered communications that foster a better understanding of science and enable readers to pursue new opportunities in research, education, and environmental problem-solving. Our publications synthesize scientific findings using effective science communication techniques.

Nutrient limitation of phytoplankton in three tributaries of Chesapeake Bay: Detecting responses following nutrient reductions (Page 1)

Nutrient limitation of phytoplankton in three tributaries of Chesapeake Bay: Detecting responses following nutrient reductions

Zhang Q, Fisher TR,Buchanan C, Gustafson AB, Karrh RR, Murphy RR, Testa JM, Tian R, Tango PJ ·
2022

Many coastal ecosystems suffer from eutrophication, algal blooms, and dead zones due to excessive anthropogenic inputs of nitrogen (N) and phosphorus (P). This has led to regional restoration efforts that focus on managing watershed loads of N and P. In Chesapeake Bay, the largest estuary in the United States, dual nutrient reductions of N and P have been pursued since the 1980s.

Read more

Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management (Page 1)

Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management

Zhang Q, Fisher TR, Trentacoste EM, Buchanan C, Gustafson AB, Karrh R, Murphy RR, Keisman J, Wu C, Tian R, Testa JM, Tango PJ ·
2021

Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is necessary for developing successful management strategies. Chesapeake Bay has well-documented seasonal and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient limitation have changed in response to nutrient management efforts.

Read more

Chesapeake Bay Dissolved Oxygen Criterion Attainment Deficit: Three Decades of Temporal and Spatial Patterns (Page 1)

Chesapeake Bay dissolved oxygen criterion attainment deficit: Three decades of temporal and spatial patterns

Zhang Q, Tango PJ, Murphy RR, Forsyth MK, Tian R, Keisman J, Trentacoste EM ·
2018

Low dissolved oxygen (DO) conditions are a recurring issue in waters of Chesapeake Bay, with detrimental effects on aquatic living resources. The Chesapeake Bay Program partnership has developed criteria guidance supporting the definition of state water quality standards and associated assessment procedures for DO and other parameters, which provides a binary classification of attainment or impairment.

Read more

Chesapeake Bay's water quality condition has been recovering: Insights from a multimetric indicator assessment of thirty years of tidal monitoring data

Zhang Q, Murphy RR, Tian R, Forsyth MK, Trentacoste EM, Keisman J, Tango PJ ·
2018

To protect the aquatic living resources of Chesapeake Bay, the Chesapeake Bay Program partnership has developed guidance for state water quality standards, which include ambient water quality criteria to protect designated uses (DUs), and associated assessment procedures for dissolved oxygen (DO), water clarity/underwater bay grasses, and chlorophyll-a. For measuring progress toward meeting the respective states' water quality standards…

Read more

Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming (Page 1)

Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming

Wang P,Linker L, Wang H, Bhatt G, Yactayo G, K Hinson K and Tian R ·
2017

The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario.

Read more

Effects of cross-channel bathymetry and wind direction on destratification and hypoxia reduction in the Chesapeake Bay (Page 1)

Effects of cross-channel bathymetry and wind direction on destratification and hypoxia reduction in the Chesapeake Bay

Wang P, Wang H, Linker L, and Tian R ·
2016

A coupled estuarine hydrodynamic model and water quality model were used to analyze differences in destratification and anoxia/hypoxia reduction by wind directions in the north-south oriented Chesapeake estuary, USA. The predominant cross-channel bathymetry in the Bay's anoxic center is asymmetric with a steeper and narrower shoal on the eastern shore than on the western shore, which modifies wind-induced circulation differently for two opposite wind directions.

Read more