Publications by Qian Zhang

IAN is committed to producing practical, user-centered communications that foster a better understanding of science and enable readers to pursue new opportunities in research, education, and environmental problem-solving. Our publications synthesize scientific findings using effective science communication techniques.

Nutrient limitation of phytoplankton in three tributaries of Chesapeake Bay: Detecting responses following nutrient reductions (Page 1)

Nutrient limitation of phytoplankton in three tributaries of Chesapeake Bay: Detecting responses following nutrient reductions

Zhang Q, Fisher TR,Buchanan C, Gustafson AB, Karrh RR, Murphy RR, Testa JM, Tian R, Tango PJ ·
2022

Many coastal ecosystems suffer from eutrophication, algal blooms, and dead zones due to excessive anthropogenic inputs of nitrogen (N) and phosphorus (P). This has led to regional restoration efforts that focus on managing watershed loads of N and P. In Chesapeake Bay, the largest estuary in the United States, dual nutrient reductions of N and P have been pursued since the 1980s.

Read more

A water quality barometer for Chesapeake Bay: Assessing spatial and temporal patterns using long-term monitoring data (Page 1)

A water quality barometer for Chesapeake Bay: Assessing spatial and temporal patterns using long-term monitoring data

Zahran AR, Zhang Q, Tango P, Smith EP ·
2022

This paper develops a barometer that indexes water quality in the Chesapeake Bay and summarizes quality over spatial regions and temporal periods. The barometer has a basis in risk assessment and hydrology, and is a function of three different metrics of water quality relative to numerical criteria: relative frequency of criterion attainment; magnitude of deviation from a numerical criterion; and duration of criterion attainment.

Read more

Major point and nonpoint sources of nutrient pollution to surface water have declined throughout the Chesapeake Bay watershed (Page 1)

Major point and nonpoint sources of nutrient pollution to surface water have declined throughout the Chesapeake Bay watershed

Sabo RD, Sullivan B, Wu C, Trentacoste E, Zhang Q, Shenk GW, Bhat G and Linker LC ·
2022

Understanding drivers of water quality in local watersheds is the first step for implementing targeted restoration practices. Nutrient inventories can inform water quality management decisions by identifying shifts in nitrogen (N) and phosphorus (P) balances over space and time while also keeping track of the likely urban and agricultural point and nonpoint sources of pollution.

Read more

Nutrient Improvements in Chesapeake Bay: Direct Effect of Load Reductions and Implications for Coastal Management (Page 1)

Nutrient improvements in Chesapeake Bay: Direct effect of load reductions and implications for coastal management

Murphy RR, Keisman J, Harcum J, Karrh RR, Lane M, Perry ES, Zhang Q ·
2022

In Chesapeake Bay in the United States, decades of management efforts have resulted in modest reductions of nutrient loads from the watershed, but the corresponding improvements in estuarine water quality have not consistently followed. Generalize additive models were used to directly link river flows and nutrient loads from the watershed to nutrient trends in the estuary on a station-by-station basis, which allowed for identification of exactly when and where responses are happening.

Read more

Nitrogen in the Chesapeake Bay Watershed A Century of Change 1950-2050 (Page 1)

Nitrogen in the Chesapeake Bay watershed: A century of change, 1950–2050

Clune JW, Capel PD, Miller MP, Burns DA, Sekellick AJ, Claggett PR, Coupe RH, Fanelli RM, Garcia AM, Raffensperger JP, Terziotti S, Bhatt G, Blomquist JD, Hopkins KG, Keisman JL, Linker, LC Shenk GW, Smith, RA, Soroka AM, Webber JS, Wolock DM, Zhang Q ·
10 November 2021

Nitrogen, a critical element in all forms of life, is continuously being passed from nonliving to living matter and then back again, but an excess of this nutrient can have adverse effects on aquatic environments. An understanding of the past, present, and future sources, movement, and fate of nitrogen in the Chesapeake Bay watershed can help inform efforts to bring this cycle back into balance (fig. OV.1).

Read more

Inferring Controls on Dissolved Oxygen Criterion Attainment in the Chesapeake Bay (Page 1)

Inferring controls on dissolved oxygen criterion attainment in the Chesapeake Bay

Langendorf RE, Lyubchich V, Testa JM, Zhang Q ·
2021

Environmental monitoring programs generate multivariate time series for the assessment of ecosystem health. Recent developments in causal inference offer ways to translate these observational data into networks able to explain gains and losses in the trajectories of indicator variables. Here, we present a case study of this approach using surface water dissolved oxygen (DO) criteria attainment across the Chesapeake Bay.

Read more

Chesapeake legacies: The importance of legacy nitrogen to improving Chesapeake Bay water quality (Page 1)

Chesapeake legacies: The importance of legacy nitrogen to improving Chesapeake Bay water quality

Chang SY, Zhang Q, Byrnes DK, Basu NB, Van Meter KJ ·
2021

In the Chesapeake Bay, excess nitrogen (N) from both landscape and atmospheric sources has for decades fueled algal growth, disrupted aquatic ecosystems, and negatively impacted coastal economies. Since the 1980s, Chesapeake Bay Program partners have worked to implement a wide range of measures across the region—from the upgrading of wastewater treatment plants to implementation of farm-level best management practices—to reduce N fluxes to the Bay.

Read more

An approach for decomposing river water-quality trends into different flow classes (Page 1)

An approach for decomposing river water-quality trends into different flow classes

Zhang Q, Webber JS, Moyer DL, Chanat JG ·
2021

A number of statistical approaches have been developed to quantify the overall trend in river water quality, but most approaches are not intended for reporting separate trends for different flow conditions. We propose an approach called FN2Q, which is an extension of the flow-normalization (FN) procedure of the well-established WRTDS (“Weighted Regressions on Time, Discharge, and Season”) method.

Read more