Publications about Chesapeake Bay

IAN is committed to producing practical, user-centered communications that foster a better understanding of science and enable readers to pursue new opportunities in research, education, and environmental problem-solving. Our publications synthesize scientific findings using effective science communication techniques.

Chesapeake Bay & Watershed Report Card 2020 (Page 1)

Chesapeake Bay & Watershed Report Card 2020

Alexandra Fries, Sky Swanson, Caroline Donovan, Annie Carew, Joe Edgerton, Heath Kelsey ·
22 June 2021

This report card provides a transparent, timely, and geographically detailed assessment of Chesapeake Bay. Since 2016, UMCES has engaged stakeholders throughout the watershed to transform the report card into an evaluation of the Chesapeake Watershed health. Watershed health includes traditional ecosystem indicators, but also social, economic, and cultural indicators. This is the second year the watershed has been scored, and four new indicators have been added.

Read more

2020 Chesapeake Bay Report Card Economic Indicator Two-Pager (Page 1)

Local economy indicators coming next year

Michael Shuman, George Chmael ·
22 June 2021

This newsletter highlights synthesis outcomes from the Fall 2020 Economic Indicators workshop. Five new economic indicators were generated that will eventually be incorporated into future iterations of the Chesapeake Bay Report Card.

Read more

An approach for decomposing river water-quality trends into different flow classes (Page 1)

An approach for decomposing river water-quality trends into different flow classes

Zhang Q, Webber JS, Moyer DL, Chanat JG ·
2021

A number of statistical approaches have been developed to quantify the overall trend in river water quality, but most approaches are not intended for reporting separate trends for different flow conditions. We propose an approach called FN2Q, which is an extension of the flow-normalization (FN) procedure of the well-established WRTDS (“Weighted Regressions on Time, Discharge, and Season”) method.

Read more

Nutrient Trends and Drivers in the Chesapeake Bay Watershed (Page 1)

Nutrient trends and drivers in the Chesapeake Bay watershed

Hyer KE, Phillips SW, Ator SW, Moyer DL, Webber JS, Felver R, Keisman JL, McDonnell LA, Murphy R, Trentacoste EM, Zhang Q, Dennison WC, Swanson S, Walsh B, Hawkey J, Taillie D ·
26 January 2021

The Chesapeake Bay Program maintains an extensive nontidal monitoring network, measuring nitrogen and phosphorus (nutrients) at more than 100 locations on rivers and streams in the watershed. Data from these locations are used by USGS to assess the ecosystem’s response to nutrient-reduction efforts.

Read more

Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management (Page 1)

Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management

Zhang Q, Fisher TR, Trentacoste EM, Buchanan C, Gustafson AB, Karrh R, Murphy RR, Keisman J, Wu C, Tian R, Testa JM, Tango PJ ·
2021

Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is necessary for developing successful management strategies. Chesapeake Bay has well-documented seasonal and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient limitation have changed in response to nutrient management efforts.

Read more

Recent status and long‐term trends in freshwater discharge and nutrient inputs (Page 1)

Recent status and long‐term trends in freshwater discharge and nutrient inputs

Zhang Q, Cozzi S, Palinkas C, Giani M ·
18 December 2020

Anthropogenic inputs of nutrients via river runoff are the primary drivers of ecosystem degradation in Chesapeake Bay (CB) and the northern Adriatic Sea (NAS). The annual cycle of river flow is typically unimodal in CB (seasonal peak during spring) and bimodal in the NAS (peaks during April–June and October–December). Dissolved inorganic nitrogen accounts for most of the total nitrogen (TN) in both systems.

Read more

Temporal inequality of nutrient and sediment transport: a decision-making framework for temporal targeting of load reduction goals (Page 1)

Temporal inequality of nutrient and sediment transport: A decision-making framework for temporal targeting of load reduction goals

Preisendanz HE, Veith TL, Zhang Q, Shortle J ·
2021

Nutrient and sediment transport exhibit strong spatial and temporal inequality, with a small percentage of locations and events contributing to the vast majority of total annual loads. The processes for determining how to reduce total annual loads at a watershed scale often target spatial, but not temporal, components of inequality.

Read more